首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The observed magnetic field configuration and signatures of reconnection in the large solar magnetic eruptions that make major flares and coronal mass ejections and in the much smaller magnetic eruptions that make X-ray jets are illustrated with cartoons and representative observed eruptions. The main reconnection signatures considered are the imaged bright emission from the heated plasma on reconnected field lines. In any of these eruptions, large or small, the magnetic field that drives the eruption and/or that drives the buildup to the eruption is initially a closed bipolar arcade. From the form and configuration of the magnetic field in and around the driving arcade and from the development of the reconnection signatures in coordination with the eruption, we infer that (1) at the onset of reconnection the reconnection current sheet is small compared to the driving arcade, and (2) the current sheet can grow to the size of the driving arcade only after reconnection starts and the unleashed erupting field dynamically forces the current sheet to grow much larger, building it up faster than the reconnection can tear it down. We conjecture that the fundamental reason the quasi-static pre-eruption field is prohibited from having a large current sheet is that the magnetic pressure is much greater than the plasma pressure in the chromosphere and low corona in eruptive solar magnetic fields.  相似文献   

2.
The dynamic response of a 1-dimensional plasma diode to an applied step voltage is studied during a few electron transit times by numerical simulations when the initial state has an ion density minimum (an ion density cavity). Depending on the cavity depth and the applied voltage the potential drop distributes over the cavity or concentrates in a cathode sheath. The transistion between the two states as well as the cavity potential profiles are predicted by an analytical model. Simulations with periodic cavities as initial state show that the applied voltage can be shared between the cavities. A double layer, steady on the ion time scale, is created by introducing a steady cavity by ion losses.  相似文献   

3.
On an astronomical scale cosmic rays must be considered a tenuous and extremely hot (relativistic) gas. The pressure of the cosmic-ray gas is comparable to the other gas and field pressures in interstellar space, so that the cosmic-ray pressure must be taken into account in treating the dynamical properties of the gaseous disk of the galaxy. This review begins with a survey of present knowledge of the cosmic-ray gas. Then the kinetic properties of the gas are developed, followed by an exposition of the dynamical effects of the cosmic-ray gas on a large-scale magnetic field embedded in a thermal gas. The propagation of low-frequency hydromagnetic waves is worked out in the fluid approximation.The dynamical properties of the gaseous disk of the galaxy are next considered. The equations for the equilibrium distribution in the direction perpendicular to the disk are worked out. It is shown that a self-consistent equilibrium can be constructed within the range of the observational estimates of the gas density, scale height, turbulent velocity, field strength, cosmic-ray pressure, and galactic gravitational acceleration. Perturbation calculations then show that the equilibrium is unstable, on scales of a few hundred pc and in times of the order 2 × 107 years. The instability is driven about equally by the magnetic field and the cosmic-ray gas and dominates self-gravitation. Hence the instability dominates the dynamics of the interstellar gas and is the major effect in forming interstellar gas clouds. Star formation is the end result of condensation of the interstellar gas into clouds, indicating, then, that cosmic rays play a major role in initiating star formation in the galaxy.The cosmic rays are trapped in the unstable gaseous disk and escape from the disk only in so far as their pressure is able to inflate the magnetic field of the disk. The observed scale height of the galactic disk, the short life (106 years) of cosmic-ray particles in the disk of the galaxy, and their observed quiescent state in the disk, indicate that the galactic magnetic field acts as a safety valve on the cosmic ray pressure P so that PB 2/8. We infer from the observed life and quiescence of the cosmic rays that the mean field strength in the disk of the galaxy is 3–5 × 10–6 gauss.  相似文献   

4.
We review recent observations by the Yohkoh-SXT in collaboration with other spacecraft and ground-based observatories of coronal loops and prominences. These new results point to problems that SoHO will be able to address. With a unique combination of rapid-cadence digital imaging (32 s full-disk and 2 s partial-frame images), high spatial resolution (2.5 arcsec pixels), high sensitivity (EM 1042 cm–3), a low-scatter mirror, and large dynamic range, SXT can observe a vast range of targets on the Sun. Over the first 21 months of Yohkoh operations, SXT has taken over one million images of the corona and so is building up an invaluable long-term database on the large-scale corona and loop geometry. The most striking thing about the SXT images is the range of loop sizes and shapes. The active regions are a bright tangle of magnetic field lines, surrounded by a network of large-scale quiet-Sun loops stretching over distances in excess of 105 km. The cross-section of most loops seems to be constant. Loops displaying significant increase in the ratio of the footpoint to loop-top diameter () are the exception, not the rule, implying the presence of widespread currents in the corona.All magnetic structures show changes. Time scales range from seconds to months. The question of how these structures are formed, become filled with hot plasma, and are maintained is still open. While we see the propagation of brightenings along the length of active-region loops and in X-ray jets with velocities of several hundred km/s, much higher velocities are seen in the quiet Sun. In XBP flares, for example, velocities of over 1000 km/s are common. Active-region loops seem to be in constant motion, moving slowly outward, carrying plasma with them. During flares, loops often produce localized brightenings at the base and later at the apex of the loop. Quiescent filaments and prominences have been observed regularly. Their coronal manifestation seems to be an extended arcade of loops overlying the filament. Reliable alignment of the ground-based data with the X-ray images make it possible to make a detailed intercomparison of the hot and cold plasma structures over extended periods. Hence we are able to follow the long-term evolution of these structures and see how they become destabilized and erupt.  相似文献   

5.
This article reviews theories and observations related to effects produced by finite (and large) Larmor radii of charged particles in the magnetosphere. The FLR effects depend on =r H /L, wherer H is the Larmor radius andL is the spatial scale for field/plasma inhomogeneity. The parameter is a basic expansion parameter for most equations describing plasma dynamics in the magnetosphere. The FLR effects enter naturally the drift approximation for particle motion and represent also non-ideal MHD terms in the fluid formalism. The linear and higher order terms in lead to charge separation, energization of particles, and produce viscosity without collisions. The FLR effects introduce also important corrections to the dispersion relations for MHD waves and drift instabilities. Expansion of plasma into magnetic field leads to filamentation of the plasma boundary and to creation of structures with thickness less than an ion gyroradius. Large Larmor radius effects (1) in curved magnetic field geometry lead to stochastic behaviour of particle trajectories and to deterministic chaos. The tiny scale of the electron and ion gyroradii does not necessarily mean that FLR/LLR phenomena have negligible effect on the macroscopic dynamics and energetics of the whole magnetosphere. On the contrary, the small scale gyro-effects may provide the physical mechanism for gyroviscous coupling between the solar wind and the magnetosphere, the mechanism for triggering disruption of the magnetotail current layer, and the mechanism for parallel electric field that accelerate auroral particles.  相似文献   

6.
The double probe, floating potential instrumentation on ISEE-1 is producing reliable direct measurements of the ambient DC electric field at the bow shock, at the magnetopause, and throughout the magnetosheath, tail plasma sheet and plasmasphere. In the solar wind and in middle latitude regions of the magnetosphere spacecraft sheath fields obscure the ambient field under low plasma flux conditions such that valid measurements are confined to periods of moderately intense flux. Initial results show: (a) that the DC electric field is enhanced by roughly a factor of two in a narrow region at the front, increasing B, edge of the bow shock, (b) that scale lengths for large changes in E at the sub-solar magnetopause are considerably shorter than scale lengths associated with the magnetic structure of the magnetopause, and (c) that the transverse distribution of B-aligned E-fields between the outer magnetosphere and ionospheric levels must be highly complex to account for the random turbulent appearance of the magnetospheric fields and the lack of corresponding time-space variations at ionospheric levels. Spike-like, non-oscillatory, fields lasting <0.2 s are occasionally seen at the bow shock and at the magnetopause and also intermittently appear in magnetosheath and plasma sheet regions under highly variable field conditions. These suggest the existence of field phenomena occurring over dimensions comparable to the probe separation and c/pe (the characteristic electron cyclotron radius) where pe is the electron plasma frequency.  相似文献   

7.
We present a detailed analysis of the magnetic topology of flaring active region. TheH kernels are found to be located at the intersection of the separatrices with the chromosphere when the shear, deduced from the fibrils or/and transverse magnetic field direction, is taken into account. We show that the kernels are magnetically connected by field lines passing close to the separator. We confirm, for other flares, previous studies which show that photospheric current concentrations are located at the borders of flare ribbons. Moreover we found two photospheric current concentrations of opposite sign, linked in the corona by field lines which follow separatrices. These give evidence that magnetic energy is released by reconnection processes in solar flares.  相似文献   

8.
The nonlinear evolution of a partially open coronal magnetic configuration is considered, assuming that corona responds to photospheric footpoint motions by small-scale reconnection events that produce a relaxed lower-energy state while conserving the global magnetic helicity of the system. The results of numerical calculations for such a relaxed equilibrium show an essential role of the amount of helicity injected to the closed-field region. If photospheric perturbations are incoherent (small-scale shearing with inefficient helicity injection), the relaxed state becomes close to an initial potential field. In this case reconnective relaxation does not result in a substantial global evolution, just providing heating of the corona (Vekstein et al, 1993). On the contrary, sufficient injection of the magnetic helicity can lead to a considerable restructuring of the coronal magnetic configuration, with possible change of its topology (formation of magnetic islands), and even catastrophic loss of equilibrium (Wolfson et al, 1994)  相似文献   

9.
The paper reviews various approaches to the problem of evaluation and numerical representation of the magnetic field distributions produced within the magnetosphere by the main electric current systems including internal Earth's sources, the magnetopause surface current, the tail plasma sheet, the large-scale systems of Birkeland current, the currents due to radiation belt particles, and the partial ring current circuit. Some basic physical principles as well as mathematical background for development of magnetospheric magnetic field models are discussed.A special emphasis is placed on empirical modeling based on datasets created from large bodies of spacecraft measurements. A review of model results on the average magnetospheric configurations and their dependence on the geomagnetic disturbance level and the state of interplanetary medium is given. Possibilities and perspectives for elaborating the instantaneous models capable of evaluating a current distribution of magnetic field and force line configuration based on a synoptic monitoring the intensity of the main magnetospheric electric current systems are also discussed. Some areas of practical use of magnetospheric models are reviewed in short. Magnetospheric plasma and energetic particle measurements are considered in the context of their use as an independent tool for testing and correcting the magnetic field models.  相似文献   

10.
This work is concerned with binary systems that we call moderately close. These are systems in which the primary (by which we mean the initially more massive star) fills its Roche lobe when it is on the giant branch with a deep convective envelope but before helium ignition (late case B). We find that if the mass ratio q(= M 1/M 2) < q crit = 0.7 when the primary fills its Roche lobe positive feedback will lead to a rapid hydrodynamic phase of mass transfer which will probably lead to common envelope evolution and thence to either coalescence or possibly to a close binary in a planetary nebula. Although most Algols have probably filled their Roche lobes before evolving off the main-sequence we find that some could not have and are therefore moderately close. Since rapid overflow is unlikely to lead to an Algol-like system there must be some way of avoiding it. The most likely possibility is that the primary can lose sufficient mass to reduce q below q crit before overflow begins. Ordinary mass loss rates are insufficient but evidence that enhanced mass loss does take place is provided by RS CVn systems that have inverted mass ratios but have not yet begun mass transfer. We postulate that the cause of enhanced mass loss lies in the heating of the corona by by magnetic fields maintained by an dynamo which is enhanced by tidal effects associated with corotation. In order to model the the effects of enhanced mass loss we ignore the details and adopt an empirical approach calibrating a simple formula with the RS CVn system Z Her. Using further empirical relations (deduced from detailed stellar models) that describe the evolution of red giants we have investigated the effect on a large number of systems of various initial mass ratios and periods. These are notable in that some systems can now enter a much gentler Algol-like overflow phase and others are prevented from transferring mass altogether. We have also investigated the effects of enhanced angular momentum loss induced by corotation of the wind in the strong magnetic fields and consider this in relation to observed period changes. We find that a typical moderately close Algol-like system evolves through an RS CVn like system and then possibly a symbiotic state before becoming an Algol and then goes on through a red giant-white dwarf state which may become symbiotic before ending up as a double white dwarf system in either a close or wide orbit depending on how much mass is lost before the secondary fills its Roche lobe.  相似文献   

11.
Type III solar radio bursts have been observed from 10 MHz to 10 kHz by satellite experiments above the terrestrial plasmasphere. Solar radio emission in this frequency range results from excitation of the interplanetary plasma by energetic particles propagating outward along open field lines over distances from 5 R to at least 1 AU from the Sun. This review summarizes the morphology, characteristics and analysis of individual as well as storms of bursts. Substantial evidence is available to show that the radio emission is observed at the second harmonic instead of the fundamental of the plasma frequency. This brings the density scale derived by radio observations into better agreement with direct solar wind density measurements at 1 AU and relaxes the requirement for type III propagation along large density-enhanced regions. This density scale with the measured direction of arrival of the radio burst allows the trajectory of the exciter path to be determined from 10 R to 1 AU. Thus, for example, the dynamics and gross structure of the interplanetary magnetic field can be investigated by this method. Burst rise times are interpreted in terms of exciter length and dispersion while decay times refer to the radiation damping process. The combination of radio observations at the lower frequencies and in-situ measurements on non-relativistic electrons at 1 AU provide data on the energy range and efficiency of the wave-particle interactions responsible for the radio emission.  相似文献   

12.
Analysis of recent observations (from balloons, spacecraft, and surface observatories) demonstrate regional, shell, and nearpoint conjugacy at L ~ 7 during precipitative events which were characterized by local acceleration as well as release of gradient-drifted electrons injected during substorms. A number of new features of magnetospheric dynamics relating to substorm development and sudden-commencement effects, have been brought to light which, though poorly understood at present, may prove of considerable importance and are worthy of further investigation.
  1. During the initial period of instability in substorm evolution, preceding the slower magnetotail convective injection, precipitation of waves of electrons in rapid polewards motion exhibit L-shell conjugacy near midnight.
  2. Transient, large scale expansions of the magnetospheric electron population accompanied by temporally imbedded substorms display large scale regional conjugacy and are simultaneously observed as similarly transient intensity dropouts at balloon altitudes.
  3. Precipitation from gradient-drifting electrons in the dayside magnetosphere exhibits near point-conjugacy, at least down to the order of 50 km and quite probably less.
Similarly tight conjugacy applies to the release of electrons showing a specific local response to sudden commencements.
  1. Analysis of the approach to and attainment of spectral equilibrium in the precipitation observed from drifting electrons may provide information about either, or both, the source spectrum at injection and the process of local release.
  2. The specific precipitation effect sometimes observed at the time of an SC remains a rather puzzling feature, although it seems clear now that the acceleration and/or release process responsible is of a highly local nature and works selectively at small pitch angles well within the magnetospheric boundary. Coupling of the interplanetary shock with the magnetosphere must be an important aspect, but the details are not clear as yet.
  3. On at least one occasion, a large part (perhaps all) of the magnetospheric electron population varied in a nearly synchronous manner in response to solar wind induced distortions during the variable compressive phase of a sudden commencement geomagnetic storm.
In the ongoing effort to identify and understand acceleration and release mechanisms involved in magnetospheric dynamics, balloon-borne experiments will continue to be useful, providing essential information presently unattainable by other means.  相似文献   

13.
We present models of the extragalactic background light (EBL) based on several scenarios of galaxy formation and evolution. We have treated galaxy formation with the Press-Schecter approximation for both cold dark matter (CDM) and cold+hot dark matter (CHDM) models, representing a moderate (z f 3) and a late (z f 1) era of galaxy formation respectively. Galaxy evolution has been treated by considering a variety of stellar types, different initial mass functions and star formation histories, and with an accounting of dust absorption and emission. We find that the dominant factor influencing the EBL is the epoch of galaxy formation. A recently proposed method for observing the EBL utilizing the absorption of 0.1 to 10 TeV gamma-rays from active galactic nuclei (AGN) is shown to be capable of discriminating between different galaxy formation epochs. The one AGN viewed in TeV light, Mrk 421, does show some evidence for a cutoff above 3 TeV; based on the EBL models presented here, we suggest that this is due to extinction in the source. The large absorption predicted at energies > 200 GeV for sources at z > 0.5 indicates that observations of TeV gamma-ray bursts (GRB) would constrain or eliminate models in which the GRB sources lie at cosmological distances.Now at University of Chicago, Dept. of Astronomy & Astrophysics.  相似文献   

14.
We discuss the origin, evolution and fate of low-mass Algols (LMA) that have components with initial masses less than 2.5 M0. The semi-major axes of orbits of pre-LMA do not exceed 20–25 R0. The rate of formation of Algol-type stars is 0.01/year. Magnetic stellar winds may be the factor that determines the evolution of LMA. Most LMA end their lives as double helium degenerate dwarfs with M1/M2 0.88 (like L870-2). Some of them even merge through angular momentum loss caused by gravitational waves.  相似文献   

15.
Bursts of massive star formation can temporarily dominate the luminosity of galaxies spanning a wide range of morphological types. This review is concerned primarily with such events in the central 1 kpc region of spiral galaxies which result from bar driven inflows of gas triggered by interactions or mergers. Most of the stellar radiant luminosity of such bursts is absorbed by dust and re-emitted in the far-infrared and is accompanied by radio and X-ray emission from supernova remnants which can also act collectively to drive galaxy scale outflows. Both evolutionary stellar models and estimates of the gas depletion times are consistent with typical burst durations of 107–8 yr. Spatially-resolved studies of nearby starburst galaxies reveal that the activity is distributed over many individual star forming complexes within rings and other structures organized by interactions between bars and the disc over a range of scales. More distant and extreme examples associated with mergers of massive spirals have luminosities > 1013 L and molecular gas masses > 1010 M implying star formation rates > 1000 M yr–1 which can only be sustained for 107 yr. In the most luminous merging systems, however, the relative importance of starburst and AGN activity and their possible evolutionary connection is still a hotly debated issue. Also controversial are suggestions that starbursts in addition to a black hole are required to account for the properties of AGNs or that starbursts alone may be sufficient under certain conditions. In a wider context, starbursts must clearly have played an important role in galaxy formation and evolution at earlier times. Recent detections of high redshift galaxies show that star formation was underway at z 4 but do not support a continuing increase of the strong evolution in the co-moving star formation density seen out to z l. Primeval starburst pre-cursors of spheroidal systems also remain elusive. The most distant candidates are radio galaxies and quasars at z = 4–5 and a possible population of objects responsible for an isotropic sub-mm wave background tentatively claimed to have been detected by the COBE satellite.  相似文献   

16.
We give a brief review of the origin and acceleration of cosmic rays (CRs), emphasizing the production of CRs at different stages of supernova evolution by the first-order Fermi shock acceleration mechanism. We suggest that supernovae with trans-relativistic outflows, despite being rather rare, may accelerate CRs to energies above \(10^{18}\mbox{ eV}\) over the first year of their evolution. Supernovae in young compact clusters of massive stars, and interaction powered superluminous supernovae, may accelerate CRs well above the PeV regime. We discuss the acceleration of the bulk of the galactic CRs in isolated supernova remnants and re-acceleration of escaped CRs by the multiple shocks present in superbubbles produced by associations of OB stars. The effects of magnetic field amplification by CR driven instabilities, as well as superdiffusive CR transport, are discussed for nonthermal radiation produced by nonlinear shocks of all speeds including trans-relativistic ones.  相似文献   

17.
Cooling of neutron stars is calculated using an exact stellar evolution code. The full general relativistic version of the stellar structure equations are solved, with the best physical input currently available. For neutron stars with a stiff equation of state, we find that the deviation from the isothermality in the interior is significant and that it takes at least a few thousand years to reach the isothermal state. By comparing the most recent theoretical and observational results, we conclude that for Cas A, SN1006, and probably Tycho, standard cooling is inconsistent with the results from the Einstein Observatory, if neutron stars are assumed to be present in these objects. On the other hand, the detection points for RCW103 and the Crab are consistent with these theoretical results.On leave from Department of Physics, Ibaraki University, Japan  相似文献   

18.
19.
多级轴流压气机静子通道三维流场测量   总被引:2,自引:2,他引:0  
王志强  胡骏  罗钜  李亮  高翔 《推进技术》2012,33(3):371-376
为了实现多级压气机静子叶片通道内部的详细流场测量,设计加工了7根不同长度的"L"型五孔探针以及1根四孔探针。在压气机的设计工作状态,通过采用坐标位移机构带动五孔探针和四孔探针的方法,完成了四级低速大尺寸轴流压气机第3级静子叶片通道内部的7个不同轴向位置的截面上以及静子叶片出口截面上的三维流场测量,获得了静子叶片通道内部的详细流场细节。测量结果显示了通道涡和角涡的生成、发展过程以及两者之间的相互影响。实践表明,采用位移机构带动"L"型五孔探针或其它探针的方法可以应用于多级压气机静子叶片通道内部流场测量。  相似文献   

20.
Galactic and Extragalactic Magnetic Fields   总被引:1,自引:0,他引:1  
The current state of research of the Galactic magnetic field is reviewed critically. The average strength of the total field derived from radio synchrotron data, under the energy equipartition assumption, is 6±2 G locally and about 10±3 G at 3 kpc Galactic radius. These values agree well with the estimates using the locally measured cosmic-ray energy spectrum and the radial variation of protons derived from -rays. Optical and synchrotron polarization data yield a strength of the local regular field of 4±1 G, but this value is an upper limit if the field strength fluctuates within the beam or if anisotropic fields are present. Pulsar rotation measures, on the other hand, give only 1.4±0.2 G, a lower limit if fluctuations in regular field strength and thermal electron density are anticorrelated along the pathlength. The local regular field may be part of a `magnetic arm between the optical arms. However, the global structure of the regular Galactic field is not yet known. Several large-scale field reversals in the Galaxy were detected from rotation measure data, but a similar phenomenon was not observed in external galaxies. The Galactic field may be young in terms of dynamo action so that reversals from the chaotic seed field are preserved, or a mixture of dynamo modes causes the reversals, or the reversals are signatures of large-scale anisotropic field loops. The Galaxy is surrounded by a thick disk of radio continuum emission of similar extent as in edge-on spiral galaxies. While the local field in the thin disk is of even symmetry with respect to the plane (quadrupole), the global thick-disk field may be of dipole type. The Galactic center region hosts highly regular fields of up to milligauss strength which are oriented perpendicular to the plane. A major extension of the data base of pulsar rotation measures and Zeeman splitting measurements is required to determine the structure of the Galactic field. Further polarization surveys of the Galactic plane at wavelengths of 6 cm or shorter may directly reveal the fine structure of the local magnetic field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号