首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Satellite-Satellite Laser Links for Future Gravity Missions   总被引:3,自引:0,他引:3  
Bender  P. L.  Hall  J. L.  Ye  J.  Klipstein  W.M. 《Space Science Reviews》2003,108(1-2):377-384
A strong candidate for use in future missions to map time variations in the Earth's gravity field is laser heterodyne measurements between separate spacecraft. At the shortest wavelengths that can be measured in space, the main accuracy limitation for variations in the potential with latitude is expected to be the frequency stability of the laser. Thus the development of simple and reliable space-qualified lasers with high frequency stability appears to be an important goal for the near future. In the last few years, quite high stability has been achieved by locking the second harmonic of a Nd:YAG laser to a resonant absorption line of iodine molecules in an absorption cell. Such a laser system can be made quite robust, and temperature related frequency shifts can be controlled at a low value. Recent results from laboratory systems are described. The Allan standard deviation for the beat between two such lasers was 2 × 10−14 at 10 s, and reached 7 × 10−15 at 600 s. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
A laboratory study has been made of concepts that utilize a laser for a vibration measurement device. The laser beam possesses the needed characteristics for a spatially directed carrier capable of detecting and transmitting vibration information to remote data processing equipment; furthermore, such a laser vibration measurement device can accomplish the measurement without mechanical contact with the structure under test. The measurement technique utilizes the Doppler shift produced on a wave reflected from a surface vibrating normal to the beam path. Several techniques are available for detecting the Doppler shift; optical heterodyne or homodyne detection and microwave subcarrier modulation methods are candidates for practical instruments. Preliminary results from laboratory experiments indicate Optical heterodyne detection to be the most practical method with present state-of-the-art equipment.  相似文献   

3.
The first 8.5m infrared heterodyne spectrometer has been constructed using tuneable semiconductor (PbSe) diode lasers and was used to measure absorption line profiles of N2O in the laboratory and black body emission from the Moon and from Mars. Spectral information was recorded over a 200 MHz bandwidth using an 8-channel filter bank. The resolution was 25 MHz (6 × 10–6 m) and the minimum detectable (black-body) power was 1 × 10–16 W for 8 min of integration. The results demonstrate the usefulness of heterodyne spectroscopy for the study of remote and local sources in the infrared.We wish to thank Dr Jack Butler and Craig Simpson (Arthur D. Little, Inc.) for their continuing (and successful) efforts to grow better diode lasers during the course of this experiment. We thank the National Radio Astronomy Observatory for the loan of a 40-channel filter bank and associated mini-computer.We thank en masse the dozens of people who loaned equipment to us for the duration of this experiment, and the commercial firms (especially Harshaw, Inc.) which expedited orders for crucial equipment. We thank Dr Bertram Donn, Dr Norman Ness, and Dr George Pieper for administrative, scientific, and financial support; and we thank Mr James Faris for technical assistance and Dr Sol Glicker for preparation of sample gas cells. We thank Dr Thomas Clark for providing the Kohoutek ephemeris, sighting printout, and predicted molecular line positions and for advice and the loan of some equipment. Finally, we wish to acknowledge the strong support accorded us by our wives and families who scarcely saw us during this period.  相似文献   

4.
Infrared astronomical measurements are calibrated against reference sources, usually primary standard stars that are, in turn, calibrated either by direct or indirect means. A direct calibration compares the star with a certified source, typically a blackbody. Indirect methods extrapolate a direct measurement of the flux at one wavelength to the flux at another. Historically, α Lyr (Vega) has been used as the primary standard as it is bright, easily accessible from the northern hemisphere, and is well calibrated in the visual. Until recently, the direct absolute infrared calibrations of α Lyr and those derived from the absolute solar flux scaled to the observed spectral energy distributions of solar type stars increasingly diverged with wavelength from those obtained using a model atmosphere to extrapolate the absolute visual flux of Vega into the infrared. The exception is the direct calibration by the 1996/97 Midcourse Space Experiment of the absolute fluxes for a number of the commonly used infrared standard stars, including Vega.In the mid-1980s, the Air Force Geophysics Laboratory began a program that led to the establishment of a network of stars with which to calibrate infrared space-based sensors. α Lyr and a CMa were adopted as the fundamental references and the absolute 1.2 to 35 µm infrared spectral energy distributions for the 616 secondary standard stars in the network were derived through spectral and photometric comparisons with the primary standards. The stars are also used for calibration at ground-based infrared observatories. For applications in which the network stars may not be bright enough, particularly at the longer infrared wavelengths, planets and the larger asteroids are used. Planets and asteroids move and rather sophisticated thermal modeling of the bodies is required to predict the disk-integrated brightness at a specific time with reasonable accuracy. The Infrared Space Observatory applied such a sophisticated ‘thermo-physical’ model to the largest asteroids to support calibration of the sensors to a claimed accuracy of within 5%. The AFRL program also created a spectral atlas of the brightest stars in the sky that, although they are variable, may be used for calibration if the large(r) attendant uncertainties are acceptable.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

5.
Infrared astronomical measurements are calibrated against reference sources, usually primary standard stars that are, in turn, calibrated either by direct or indirect means. A direct calibration compares the star with a certified source, typically a blackbody. Indirect methods extrapolate a direct measurement of the flux at one wavelength to the flux at another. Historically, α Lyr (Vega) has been used as the primary standard as it is bright, easily accessible from the northern hemisphere, and is well calibrated in the visual. Until recently, the direct absolute infrared calibrations of α Lyr and those derived from the absolute solar flux scaled to the observed spectral energy distributions of solar type stars increasingly diverged with wavelength from those obtained using a model atmosphere to extrapolate the absolute visual flux of Vega into the infrared. The exception is the direct calibration by the 1996/97 Midcourse Space Experiment of the absolute fluxes for a number of the commonly used infrared standard stars, including Vega.In the mid-1980s, the Air Force Geophysics Laboratory began a program that led to the establishment of a network of stars with which to calibrate infrared space-based sensors. α Lyr and a CMa were adopted as the fundamental references and the absolute 1.2 to 35 µm infrared spectral energy distributions for the 616 secondary standard stars in the network were derived through spectral and photometric comparisons with the primary standards. The stars are also used for calibration at ground-based infrared observatories. For applications in which the network stars may not be bright enough, particularly at the longer infrared wavelengths, planets and the larger asteroids are used. Planets and asteroids move and rather sophisticated thermal modeling of the bodies is required to predict the disk-integrated brightness at a specific time with reasonable accuracy. The Infrared Space Observatory applied such a sophisticated ‘thermo-physical’ model to the largest asteroids to support calibration of the sensors to a claimed accuracy of within 5%. The AFRL program also created a spectral atlas of the brightest stars in the sky that, although they are variable, may be used for calibration if the large(r) attendant uncertainties are acceptable.  相似文献   

6.
Recent observational and theoretical studies of interplanetary shock waves associated with solar flares are reviewed. An attempt is made to outline the framework for the genesis, life and demise of these shocks. Thus, suggestions are made regarding their birth within the flare generation process, MHD wave propagation through the chromosphere and inner corona, and maturity to fully-developed coronal shock waves. Their subsequent propagation into the ambient interplanetary medium and disturbing effects within the solar wind are discussed within the context of theoretical and phenomenological models. The latter — based essentially on observations — are useful for a limited interpretation of shock geometric and kinematic characteristics. The former — upon which ultimate physical understanding depends — are used for clarification and classification of the shocks and their consequences within the solar wind. Classification of limiting cases of blast-produced shocks (as in an explosion) or longer lasting ejecta (or piston-driven shocks) will hopefully be combined with the study of the flare process itself.The theoretical approach, in spite of its contribution to clarification of various concepts, contains some fundamental limitations and requires further study. Numerical simulations, for example, depend upon a non-unique set of multi-parameter initial conditions at or near the Sun. Additionally, the subtle but important influence of magnetic fields upon energy transport processes within the solar wind has not been considered in the numerical simulation approach. Similarity solutions are limited to geometrical symmetries and have not exploited their potential beyond the special cases of the blast and the constant-velocity, piston-driven shock waves. These continuum fluid studies will probably require augmentation or even replacement by plasma kinetic theory in special situations when observations indicate the presence of anomalous transport processes. Presently, for example, efforts are directed toward identification of detailed shock structures (as in the case of Earth's bow shock) and of the disturbed solar wind (such as the piston).Further progress is expected with extensive in situ and remote monitoring of the solar wind over a wide range of heliographic radii, longitudes and latitudes.This paper is a revised and updated version of an invited review originally presented at the IUGG XV General Assembly, Moscow, U.S.S.R., 2–14 August 1971.  相似文献   

7.
The infrared investigation on Voyager uses two interferometers covering the spectral ranges 60–600 cm–1 (17–170 m) and 1000–7000 cm–1 (1.4–10 m), and a radiometer covering the range 8000–25 000 cm–1 (0.4–1.2 m). Two spectral resolutions (approximately 6.5 and 2.0 cm–1) are available for each of the interferometers. In the middle of the thermal channel (far infrared interferometer) the noise level is equivalent to the signal from a target at 50 K; in the middle of the reflected sunlight channel (near infrared interferometer) the noise level is equivalent to the signal from an object of albedo 0.2 at the distance of Uranus.For planets and satellites with substantial atmospheres, the data will be used to investigate cloud and gas composition (including isotopic ratios), haze scale height, atmospheric vertical thermal structure, local and planetary circulation and dynamics, and planetary energy balance. For satellites with tenuous atmospheres, data will be gathered on surface and atmospheric composition, surface temperature and thermal properties, local and global phase functions, and surface structure. For Saturn's rings, the composition and radial structure, particle size and thermal characteristics will be investigated. Comparative studies of the planets and their satellite systems will be carried out.Paris Observatory.Cornell University.Jet Propulsion Laboratory.University of Maryland.  相似文献   

8.
In this review the present state of our knowledge on the properties of heavy ions in low energy cosmic rays measured in the Skylab mission and in other spacecrafts is summarised and the possible mechanisms of their origin are discussed. A brief review of the general features of the galactic and solar cosmic rays is given in order to understand the special features of the low energy heavy ions of cosmic rays. The results of the cosmic ray experiment in the Skylab show that in the low energy interval of 8–30 MeV/N, the abundances of oxygen, nitrogen, and neon ions, relative to carbon are enhanced by a factor of 5 to 2 as compared to high energy cosmic rays; while Mg, Si, S, and A are depleted. In 50–150 MeV/N energy interval the abundance of nuclei of Ca-Cr relative to iron-group (Z = 25–28) is found to be highly enhanced, as compared to high energy cosmic rays. Furthermore the observations of the energy spectra of O, N, and Ne ions and their fairly large fluences in the energy interval of 8–30 MeV/N below the geomagnetic cut off energy of 50 MeV/N for fully stripped nuclei at the Skylab orbit indicate that these heavy ions are probably in partly ionised states. Thus, it is found that the Skylab results represent a new type of heavy ion population of low energy cosmic rays below 50 MeV/N, in the near Earth space and their properties are distinctly different from those of high energy cosmic rays and are similar to those of the anomalous component in the interplanetary space. The available data from the Skylab can be understood at present on the hypothesis that low energy interplanetary cosmic ray ions of oxygen etc. occur in partly ionised state such as O+1,O+2, etc. and these reach the inner magnetosphere at high latitudes where stripping process occurs near mirror points and this leads to temporarily trapped ions such as O+3, O+4, etc. It is noted that the origin of these low energy heavy cosmic ray ions in the magnetosphere and in interplanetary space is not yet fully understood and new type of sources or processes are responsible for their origin and these need further studies.  相似文献   

9.
Interplanetary streams and their interaction with the earth   总被引:1,自引:0,他引:1  
Plasma and magnetic field observations of interplanetary streams near 1 AU are summarized. Two types of streams have been identified — corotating streams and flare-associated, and other flow patterns are present due to interactions among streams. The theory of corotating streams, which attributes them to a high temperature region near the Sun, satisfactorily explains many of the effects observed at 1 AU. A correspondingly complete theory of flare-associated streams does not exist. Streams are a key link in the chain that connects solar and geomagnetic activity. The factors that most influence geomagnetic activity are probably related to streams and determined by the dynamics of streams. The evolution of streams on scales of 27 days and 11 years probably determines the corresponding variations of geomagnetic activity.  相似文献   

10.
The theory of heterodyne radiation receivers for the infrared and far-infrared is reviewed. For simplicity, only systems based on photoemissive and photoconductive radiation mixers are considered. The signal-to-noise ratio is derived, and expressions for this quantity under various conditions are given. A brief comparison is made between heterodyne systems and high-resolution spectrometers using direct radiation detectors. It is concluded that for high spectral resolving powers and for relatively small astronomical sources, heterodyne systems are likely to offer a distinct advantage in signal-to-noise ratio, especially at long far-infrared wavelengths.  相似文献   

11.
Until now most very-low-frequency (VLF) radio noise experiments in the ionosphere, magnetosphere and solar wind have been able to provide only the amplitude and spectral characteristics of VLF phenomena. Experiments using multiple receivers to measure the amplitudes and relative phases of the magnetic and electric wave components, however, can give the wave characteristics in addition. Knowledge of both the spectral and the wave characteristics are desirable in making deductions about the noise source location and mechanism and about the properties of the propagation path. Expressions are derived for obtaining the electromagnetic wave characteristics — wave normal vector, Poynting vector and wave polarization — and the electrostatic wave characteristics — wave normal direction and field magnitude — from the amplitudes and relative phases of the wave components. The antenna systems capable of measuring the necessary wave components on payloads which are not spinning, spinning, or spinning and precessing are described. Consideration is given to the experimental technique of reducing payload interference, of transferring the required data to the ground and of obtaining the desired spatial, frequency, amplitude and phase resolution.The data obtained with such an experiment may represent the superposition of signals from multiple sources and multiple paths and from interference signals. Interpretation of these results is discussed and the use of the results of obtaining information on the source location and mechanism and on the propagation path properties is described. Recently several sounding rocket and satellite experiments capable of measuring some of the wave characteristics have been flown. The results concerning the wave normal directions for several different types of VLF noise phenomena are summarized.  相似文献   

12.
Current observational data base on the motion of comets and asteroids is reviewed. Particular attention is paid to the absolute and relative abundances of different dynamical types of objects, and to the time intervals between their first and last observations. The latter quantity, ranging from two days to two milliennia for individual objects, is the dominant measure of the accuracy of the orbit determination. Distribution of the tracking times of comets (distinguished by dynamical age: new, long-period, Halley type, Jupiter family) and asteroids (distinguished by stability: Apollos, Amors, main-belt asteroids, outer librators, outer unstable objects) are reconstructed. The peculiar shapes of individual distributions can be explained by the complex mechanisms of discoveries, rediscoveries, orbit computations, follow-up observations and backward identifications. A comparison is also made with the dynamical data base on meteoroids, as regards the accuracy of their orbits.The cumulative tracking times (170000 yr for all 7600 objects with known orbits taken together) are compared with the lifetimes and occurrence rates of different events of evolutionary significance. Only in the case of short-period comets the evolution is rapid enough to render observable a variety of important changes, ranging from drastic transformations of orbits to disruption or total outgassing. For asteroids, only minor cratering collisions which do not result in detectable changes of their orbits are covered by the whole observational history.Expected future improvements of observing and data-handling techniques are outlined. With these in view, the size and character of the data to become available by the end of this century are predicted. Dynamical types of objects, which are currently known in only one or a few examples, are pointed out. Apparently, other types of rare occurrence and short survival time still escape detection. A list of easiest targets of short-duration spacecraft missions is presented.The deficiencies of current statistics due to observational selection; the broad variety of regimes of motion occupied by widely differing proportional representations of the known objects; and demands for suitable targets of future spacecraft missions make it highly desirable to maintain the present rapid rate of augmentation of the data base for the years to come.Recent passages of two comets — 1983d IRAS-Araki-Alcock and 1983e Sugano-Saigusa-Fujikawa — near the Earth indicate that both the collision rate given in Table VIII and the contribution of long-period comets to it may have been slightly underestimated. The appropriate adjustment of the log-t values by less than — 0.10 has no effect of the general conclusions, however.The success of the orbiting observatory IRAS in detecting faint interplanetary objects lends better promises for the increase of the number of known objects (in particular comets) than anticipated in Section 6 and estimated in Table IX. Obviously, the outcome will largely depend on the implementation, time coverage and degree of exploitation of similar projects in the near future.  相似文献   

13.
Sun  Shen   《中国航空学报》2008,21(6):540-549
To improve performances of multi-objective optimization algorithms, such as convergence and diversity, a hybridization- encouraged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm (NSGA-Ⅱ). This mechanism uses the normalized distance to evaluate the difference among genes in a population. Three possible modes of crossover operators--"Max Distance", "Min-Max Distance", and "Neighboring-Max"--are suggested and analyzed. The mode of "Neighboring-Max", which not only takes advantage of hybridization but also improves the distribution of the population near Pareto optimal front, is chosen and used in NSGA-Ⅱ on the basis of hybridization-encouraged mechanism (short for HEM-based NSGA-Ⅱ). To prove the HEM-based algorithm, several problems are studied by using standard NSGA-Ⅱ and the presented method. Different evaluation criteria are also used to judge these algorithms in terms of distribution of solutions, convergence, diversity, and quality of solutions. The numerical results indicate that the application of hybridization-encouraged mechanism could effectively improve the performances of genetic algorithm. Finally, as an example in engineering practices, the presented method is used to design a longitudinal flight control system, which demonstrates the obtainability of a reasonable and correct Pareto front.  相似文献   

14.
The present review paper is an account on the experimental determination of the wall position relative to the probe in wall-bounded turbulent flow studies. A thorough review on common measurement techniques as well as correction methods reveals, that there are a number of pitfalls, that—when not accounted for—can lead to wrong conclusions about the wall position and thereby also on the near-wall behaviour of mean and turbulence quantities. Employing the state-of-the-art databases from direct numerical simulations of wall-bounded turbulent flows various indirect methods have been tested and assessed in terms of their robustness and accuracy. It is also demonstrated that accurate measurements reaching the viscous sublayer are necessary in order to ensure a correctly deduced wall position, and dependent quantities as for instance the near-wall scaling of mean (e.g. Reynolds number dependence of the buffer region or the log law constants) and turbulence (e.g. the near-wall peak location of Reynolds stresses) quantities.In experiments using hot-wires near the wall it is well known that heat conduction between the hot-wire and the wall gives errors and mean velocity data from the viscous sublayer can usually not be used to determine the wall position. In this paper we introduce a new method which takes advantage of the similarity of the probability density distributions (pdf) in the near wall region. By using the high velocity data of the pdf, which is shown not to be affected by heat conduction, the heat conduction problem can be circumvented.Extensive appendices are included, describing the history and present knowledge about the scaling of the mean velocity in the near wall and overlap regions in wall bounded turbulent flows.  相似文献   

15.
Direct and indirect observations of interplanetary shock waves have been extended to the study of (i) the shock structure itself; (ii) the disturbed solar wind in its wake; (iii) additional discontinuities such as reverse shocks and pistons; and (iv) the shock's kinematic behavior. The last item — the trajectory — has benefited by the procedure (suggested by Pintér) of matching type II radio drift-inferred velocities with indirectly-inferred initial velocities found from at least two successive measurements in space. The significance of making type II observations at hectometric and kilometric wavelengths (as made, for example, by Slysh and Malitson, Feinberg and Stone) cannot be over-emphasized due to this technique's ability to make unambiguous solar terrestrial relationships. More direct and physically-meaningful observations, however, are still dependent uponin situ plasma and magnetic field measurements. Additional emphasis is presently being placed on numerical modeling of shock-induced disturbances in the solar wind as generated by both flares and stream-stream interactions. The former mechanism is emphasized in this review with several recommendations for further research: (a) further numerical modeling for shocks, starting when they are born within relatively low-Alfvén speed coronal regions; (b) expanded synoptic studies by spacecraft at various heliocentric longitudes, radii, and (eventually) latitudes with coordinated diagnostics; and (c) extended patrol of natural probes, such as comets, augmented with theoretical studies of possible shock-induced mechanical and chemical effects.  相似文献   

16.
ROSETTA — the Comet Nucleus Sample Return mission — is one of the four Cornerstone missions to which ESA has committed itself in its approved Long-Term Programme Horizon 2000. The mission is currently being studied in collaboration with NASA. The comet-nucleus samples that ROSETTA is to provide will allow us to study some of the most primitive material in the solar system and the physical and chemical processes that marked the beginning of the system 4.6 billion years ago. For ESA, ROSETTA is a new type of mission: one which will return a sample at cryogenic temperature, and where as much effort has to be spent on preparing the laboratory analysis on-ground as has to be invested in preparing the space segment with the sample acquisition and in situ documentation. As part of the preparation for this mission, ESA is now starting to consider Planetary Protection issues.  相似文献   

17.
Pneuman  G. W. 《Space Science Reviews》1986,43(1-2):105-138
In this review, we consider the central physical aspects pertinent to the acceleration of the solar wind. Special importance is placed on the high-speed streams since the properties of these structures seem to strain the various theoretical explanations the most. Heavy emphasis is also given to the observations — particularly as to what constraints they place on the theories. We also discuss certain sporadic events such as spicules, macrospicules, X-ray bright points, and outflows seen in the EUV associated with the explosive events, jets, and coronal bullets which could be of relevance to this problem.Three theoretical concepts pertaining to the solar wind acceleration process are examined — purely thermal acceleration with and without extended heating, acceleration due to Alfvén wave pressure, and diamagnetic acceleration. Emphasis is given to how well these theories meet the constraints imposed by the observations. Diamagnetism is argued to be a powerful ingredient in solar wind theory, both in the light of observed sporatic outflows seen in the chromosphere and transition region and also because of its effectiveness in increasing the flow speed and producing strong acceleration near the Sun in line with coronal hole observations.  相似文献   

18.
Recent space observations of waves, both electromagnetic and electrostatic, are reviewed and the role which they can play in the dynamics of magnetospheric particles is stressed. Wave particle interactions (WPI) in the exo- and intra-plasmaspheric media depend on the exact process of particle injection under the influence of magnetospheric electric fields, and on the spatial distribution of the cold plasma particles; these two aspects of the problem are studied to some extent. The concepts of optimum cold plasma density, critical energy, limiting flux, marginal stability, steady-state equilibrium are critically discussed. The non-linear aspects — both experimental and theoretical — of WPI's are reviewed and a special section is devoted to active experiments in space. An attempt is made to outline which kind of experiments could be made at high-latitudes, in conjunction with IMS spacecrafts, in order to arrive at a better understanding of magnetospheric processes involving waves and particles.Paper presented at the Esro Symposium on European Sounding Rocket and Scientific Balloon Activity at High Latitudes with Emphasis on the International Magnetospheric Study (Örenäs Slott, Sweden, 1974).  相似文献   

19.
We report the discovery that for latitudes above 40°S, the observed recurring modulation of cosmic rays and anomalous nuclei occurs without the detection byUlysses of the solar wind velocity and magnetic field recurring enhancements that have, heretofore at lower latitudes, defined corotating interaction regions—i.e., the mechanism producing the recurring intensity variations >40°S appears to be located beyond the radial range ofUlysses.  相似文献   

20.
The Energetic Particles Investigation (EPI) instrument operates during the pre-entry phase of the Galileo Probe. The major science objective is to study the energetic particle population in the innermost regions of the Jovian magnetosphere — within 4 radii of the cloud tops — and into the upper atmosphere. To achieve these objectives the EPI instrument will make omnidirectional measurements of four different particle species — electrons, protons, alpha-particles, and heavy ions (Z > 2). Intensity profiles with a spatial resolution of about 0.02 Jupiter radii will be recorded. Three different energy range channels are allocated to both electrons and protons to provide a rough estimate of the spectral index of the energy spectra. In addition to the omnidirectional measurements, sectored data will be obtained for certain energy range electrons, protons, and alpha-particles to determine directional anisotropies and particle pitch angle distributions. The detector assembly is a two-element telescope using totally depleted, circular silicon surfacebarrier detectors surrounded by a cylindrical tungsten shielding with a wall thickness of 4.86 g cm-2. The telescope axis is oriented normal to the spherical surface of the Probe's rear heat shield which is needed for heat protection of the scientific payload during the Probe's entry into the Jovian atmosphere. The material thickness of the heat shield determines the lower energy threshold of the particle species investigated during the Probe's pre-entry phase. The EPI instrument is combined with the Lightning and Radio Emission Detector (LRD) such that the EPI sensor is connected to the LRD/EPI electronic box. In this way, both instruments together only have one interface of the Probe's power, command, and data unit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号