首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Probability of Collision Error Analysis   总被引:6,自引:0,他引:6  
The decision for the International Space Station (ISS) to maneuver to avoid a potential collision with another space object will be based on the probability of collision, P C. The calculation of P C requires the covariance of both objects at conjunction. It is well known that the covariance computed by US Space Command is optimistic (too small), especially at altitudes where atmospheric drag is the dominant perturbation, because its computation assumes there are no dynamic model errors. In this paper the effect of errors in the covariance on P C and the sensitivity of P C to the encounter geometry are investigated.  相似文献   

2.
The stationary orbits around an asteroid, if exist, can be used for communication and navigation purposes just as around the Earth. The equilibrium attitude and stability of a rigid spacecraft on a stationary orbit around a uniformly-rotating asteroid are studied. The linearized equations of attitude motion are obtained under the small motion assumption. Then, the equilibrium attitude is determined in both cases of a general and a symmetrical spacecraft. Due to the higher-order inertia integrals of the spacecraft, the equilibrium attitude is slightly away from zero Euler angles. Then necessary conditions of stability of this conservative system are analyzed based on the linearized equations of motion. The effects of different parameters, including the harmonic coefficients C20 and C22 of the asteroid and higher-order inertia integrals of the spacecraft, on the stability are assessed and compared. Due to the significantly non-spherical shape and rapid rotation of the asteroid, the effects of the harmonic coefficients C20 and C22 are very significant, while effects of the third- and fourth-order inertia integrals of the spacecraft can be neglected. Considering a spacecraft on a stationary orbit around an example asteroid, we show that the classical stability domain predicted by the Beletskii–DeBra–Delp method on a circular orbit in a central gravity field is modified due to the non-spherical mass distribution of the asteroid. Our results are confirmed by a numerical simulation.  相似文献   

3.
Based on the results of investigations made by various authors applying different semiempirical models, we have formulated the principles of a complex method that allows one to associate sporadic streams of the solar wind (SW) at the Earths orbit with coronal mass ejections (CMEs), which are their sources on the Sun. This method is applied to an analysis of the events in the interval from October 26 to November 6, 2003. It is shown that, in the period under consideration, which is close to the maximum of solar activity, the majority of CMEs (up to 80% of their total number) turn out to be at the base of a chain of streamers. It is also shown that the component of the interplanetary magnetic field is the main factor of geoeffectiveness for six sporadic SW streams. At the same time, an unusually low value of the index minDst< -300 nT for two streams with the velocities Vmax > 1000 km/s is a consequence of the fact that they are not isolated; i.e., the subsequent stream moves through the medium disturbed by the preceding stream.Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 595–607.Original Russian Text Copyright © 2004 by M. Eselevich, V. Eselevich.  相似文献   

4.
T.J. Jaber  Y. Yan  S. Pan  M.Z. Saghir   《Acta Astronautica》2009,65(7-8):1158-1161
An accurate thermodiffusion model is of paramount importance to the petroleum industry for the prediction of the compositional variation in hydrocarbon reservoirs. Several theoretical models have been developed. Kempers and Firoozabadi models are the latest two models, which are not only applicable for binary mixtures but also for multi-component mixtures. In this paper, we applied the Firoozabadi model to a ternary hydrocarbon mixture of n-Dodecane, n-Butane and Methane with different mass fraction. It reveals that the accuracy of the thermal diffusion coefficients for a specific mixture of interest relies on the accuracy of the thermodynamic properties from equations of state, corresponding Fick's diffusion coefficients, and the thermal diffusion modeling.  相似文献   

5.
The fuel regression rate is an important parameter in the design process of the hybrid rocket motor. Additives in the solid fuel may have influences on the fuel regression rate, which will affect the internal ballistics of the motor. A series of firing experiments have been conducted on lab-scale hybrid rocket motors with 98% hydrogen peroxide (H2O2) oxidizer and hydroxyl terminated polybutadiene (HTPB) based fuels in this paper. An innovative fuel regression rate analysis method is established to diminish the errors caused by start and tailing stages in a short time firing test. The effects of the metal Mg, Al, aromatic hydrocarbon anthracene (C14H10), and carbon black (C) on the fuel regression rate are investigated. The fuel regression rate formulas of different fuel components are fitted according to the experiment data. The results indicate that the influence of C14H10 on the fuel regression rate of HTPB is not evident. However, the metal additives in the HTPB fuel can increase the fuel regression rate significantly.  相似文献   

6.
There are four bi-impulsive distinct configurations for the generalized Hohmann orbit transfer. In this case the terminal orbits as well as the transfer orbit are elliptic and coplanar. The elements of the initial orbit a1, e1 and the semi-major axis a2 of the terminal orbit are uniquely given quantities. For optimization procedure, minimization is relevant to the independent parameter eT, the eccentricity of the transfer orbit. We are capable of the assignment of minimum rocket fuel expenditure by using ordinary calculus condition of minimization for |ΔVA|+|ΔVB|=S.We exposed in detail the multi-steps of the optimization procedure. We constructed the variation table of S(eT) which proved that S(eT) is a decreasing function of eT in the admissible interval [eTmin,eTmax]. Our analysis leads to the fact that e2=1 for eT=eTmax, i.e. the final orbit is a parabolic trajectory.  相似文献   

7.
We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976–2000, have analyzed 798 geomagnetic storms with D st ≤ −50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/〈N〉 are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.  相似文献   

8.
Rusanov  A. A.  Petrukovich  A. A. 《Cosmic Research》2004,42(4):354-361
We investigated the dependence of the geomagnetic activity index K p on the velocity and density of the solar wind and the intensity of the interplanetary magnetic field (IMF). A three-layer neural network was used to create the model. The degree of the influence of input parameters on K p was determined by the value of the mean and root-mean square deviations of the model index values from the real indices. It was found that the largest contribution to the K p index is provided by the Z component of the IMF, the velocity and density of the solar wind measured with a delay from 0 to 3 h relative to the studied value of K p, and the previous value of the index itself. For the model with such a set of input parameters, the correlation coefficient between model and real series is ±0.89. The analysis of deviations from the real values of K p showed that high indices are simulated worse than low indices. In order to solve this problem the data distribution was reduced to a uniform distribution over K p, and this considerably decreased the standard deviations for large values of K p.  相似文献   

9.
A theoretical and experimental study is carried out to determine the effect of buoyancy on the rate of spread of a cocurrent smolder reaction through a porous combustible material. Since buoyant forces are proportional to the product g(gig), they can be controlled experimentally by varying either the gravitational acceleration, g, or the density difference, gig. The latter approach was followed in the present work. Measurements are performed of the smolder spread rate through porous α-cellulose (0.83 void fraction) as a function of the ambient air pressure. The experiments are carried out in a pressure vessel for ambient pressures ranging from 0.5 to 1.2 atm. The rate of spread was obtained from the temperature histories of thermocouples placed at fixed intervals along the fuel centerline. The smolder velocity was found to increase as the ambient pressure was increased. Extinction was found to occur when the buoyancy forces could not overcome the drag forces, indicating that at least for the present experimental conditions transport by diffusion cannot, by itself, support the spread of a smolder reaction. This conclusion is particularly important for outer space conditions where gravity and consequently buoyancy could be negligible. In the analysis, which assumes one-dimensional processes, the transport equations are solved to give the smolder spread rate as a function of the inlet oxygen mass flux. This mass flux is then estimated by balancing buoyancy and drag forces. Assuming that the smolder chemical reaction is only weakly dependent on pressure, the analysis finally predicts a smolder velocity dependence of the form v Yoig2gi Pa2, i.e. is proportional to the ambient pressure squared. Good qualitative agreement is found between the theoretical predictions and the experimental results.  相似文献   

10.
Abstract

This paper discusses embedding in a two-dimensional plane a symbolic representation for spatial data using the simple objects, points (P), lines (L), circuits (C), and areas (A). We have proposed PLCA as a new framework for a qualitative spatial reasoning. In a PLCA expression, the entire figure is represented in a form in which all the objects are related. We investigate the conditions for two-dimensional realizability of a PLCA expression, and derive the relation that the numbers of objects in a PLCA expression should have. In this process, we use the well-known Euler's formula. We also give an algorithm for drawing the figure of the PLCA expression that satisfies this condition in a two-dimensional plane and prove its correctness. The algorithm generates a quantitative expression from qualitative expression.  相似文献   

11.
Based on the archive OMNI data for the period 1976–2000 an analysis has been made of 798 geomagnetic storms with D st < −50 nT and their interplanetary sources-large-scale types of the solar wind: CIR (145 magnetic storms), Sheath (96), magnetic clouds MC (62), and Ejecta (161). The remaining 334 magnetic storms have no well-defined sources. For the analysis, we applied the double method of superposed epoch analysis in which the instants of the magnetic storm beginning and minimum of D st index are taken as reference times. The well-known fact that, independent of the interplanetary source type, the magnetic storm begins in 1–2 h after a southward turn of the IMF (B z < 0) and both the end of the main phase of a storm and the beginning of its recovery phase are observed in 1–2 h after disappearance of the southward component of the IMF is confirmed. Also confirmed is the result obtained previously that the most efficient generation of magnetic storms is observed for Sheath before MC. On the average parameters B z and E y slightly vary between the beginning and end of the main phase of storms (minimum of D st and D st * indices), while D st and D st * indices decrease monotonically proportionally to integral of B z and E y over time. Such a behavior of the indices indicates that the used double method of superposed epoch analysis can be successfully applied in order to study dynamics of the parameters on the main phase of magnetic storms having different duration.  相似文献   

12.
Rothkaehl  H.  Stanisławska  I.  Blecki  J.  Zbyszynski  Z. 《Cosmic Research》2003,41(4):340-344
The polar cusp being a region of the free access of the solar wind into the inner magnetosphere is also the site of turbulent plasma flow. The cusp area at low altitudes acts like a focus of a variety type of instability and disturbances from different regions of the Earth. Daily f 0 F2 frequencies are discussed regarding the cusp position. The high time resolution wave measurements together with electron and ion energetic spectra measurements registered on the board the Freja satellite and Magion-3 and the electron density at the peak of f 0 F2 layers collected from ground-based ionosonde measurements were used to study the response of ionospheric plasma within the cusp–cleft region to the strong geomagnetic storm. In this paper we present the response of the ionospheric plasma to the disturbed conditions seen in the topside wave measurements and in the ionospheric characteristics maps obtained from the ground-based VI network. The need of the cusp feature model for radio communication purposes is advocated.  相似文献   

13.
Within the framework of the Space Weather program, 25-year data sets for solar X-ray observations, measurements of plasma and magnetic field parameters in the solar wind, and D st index variations are analyzed to reveal the factors that have had the greatest influence on the development of magnetospheric storms. The correlation between solar flares and magnetic storms practically does not exceed a level of correlation for random processes. In particular, no relation was found between the importance of solar flares and the minimum of the D st index for storms that could be connected with considered flares by their time delay. The coronal mass ejections (CME; data on these phenomena cover a small part of the interval) result in storms with D st < –60 nT only in half of the cases. The most geoeffective interplanetary phenomena are the magnetic clouds (MC), which many believe to be interplanetary manifestations of CMEs, and compressions in the region of interaction of slow and fast streams in the solar wind (the so-called Corotating Interaction Region, CIR). They correspond to about two-thirds of all observed magnetic storms. For storms with –100 < D st < –60 nT, the frequencies of storms from MC and CIR being approximately equal. For strong storms with D st < – 100 nT, the fraction of storms from MC is considerably higher. The problems of reliable prediction of geomagnetic disturbances from observations of the Sun and conditions in interplanetary space are discussed.  相似文献   

14.
A statistical analysis of the shape and location of the magnetopause according to the INTERBALL-1 satellite data for the period 1995–1997 is carried out. The instants of crossing the magnetosphere boundaries obtained by the plasma and magnetic data are compared with computations based on three empirical models, namely, Petrinec and Russel, 1996; Shue et al., 1997; and Shue et al., 1998. The state of the interplanetary medium (dynamic pressure of the solar wind plasma P d and the B z component of the interplanetary magnetic field) was determined by the measurements onboard the WIND spacecraft. We estimate the accuracy of the considered models for different groups of boundary crossings: single, multiple with small duration (less than 40 min), and multiple with large duration (more than 40 min). It is demonstrated that the small-scale motions of the boundary (<1R E) are observed more often in the dayside magnetosphere, especially near the cusp region. Large-scale boundary oscillations (>1R E) are more common in the tail region of the magnetosphere, namely, its flanks. Various models give similar results: about 50% of all events have deviations by more than 1R E from the model locations. In some cases, the deviation of the measured location of the magnetosphere boundary from the model prediction may be as large as 5–6R E for all three models considered, the actual boundary being more often located nearer to the Earth than the result of model computations. The best model is that of Shue et al., 1998, but it does not differ significantly from the other models.  相似文献   

15.
We present the results on variations of ion spectra in the energy range from 1 keV to 3 MeV. The spectra measured onboard the INTERBALL Tail Probe satellite on November 13, 1995, during the satellite's passage from the dipole field lines to the lines stretched into the magnetotail are analyzed. The data of the CORALL, DOK-2, and SKA-2 instruments are used to reconstruct the ion spectra. It is shown that, when the ion spectrum along the satellite trajectory is averaged over 2-min intervals, it is smooth up to geocentric distances of 6R E. With decreasing distances, the form of the particle spectra in the region under consideration remained virtually unchanged (region from L = 11R E down to L= 6R E) and only insignificant variations of the energy of the spectral maxima are observed. Possible reasons for the observed regularities are discussed.  相似文献   

16.
In 1964, during flights of the ELECTRON satellites the narrow belts of energetic electrons (E e ≈ 6MeV) have been discovered in the Earth’s magnetosphere at L ≈ 2.75. The same structures approximately at the same magnetic shells were found in 2004 by the CORONAS-F and SERVIS-1 satellites. A comparison of the results of these experiments is presented. It is shown that the additional narrow belts of energetic electrons occur after intense magnetic storms (D st > 100 nT), in our cases, having a double-triple structure. The lifetime of these belts is a few months and their disappearance had a gradual character. The obtained results separated in time by 40 years suggest the constancy of the sources of particles of the Earth’s radiation belts and processes occurring in the magnetosphere, which ensures not only existence of the radiation belts, but also the recurrence of various exotic phenomena in the belts similar to the belt of energetic electrons at the inner magnetic shells.  相似文献   

17.
Characteristics of polar wind fluxes at a height of ∼20000 km measured by the Hyperboloid mass-spectrometer installed onboard the Interball-2 satellite are presented in the paper. The characteristics are presented for the upwelling flows of ionospheric ions H+, He+, and O+ from the sunlit polar cap in the period of solar activity minimum. Orbit segments with minimal precipitation of magnetospheric ions and electrons were preliminarily selected, and the measurements where the fluxes of ions coming from the cusp/cleft were excluded as carefully as possible. Thus, the densities, field-aligned velocities, and temperatures of ions in the regions where fluxes of polar wind could be detected with the maximal probability degree are presented in the paper. It is found that cases when only H+ ions are reaching the detector are with high probability the polar wind outflows. Their characteristics agree well with the Tube-7 hydrodynamic model and are as follows: n ≈ 1.5 cm−3, V ∼ 21 km/s; T = 3500 K, and T = 2000 K. In cases when He+ and O+ ions are also detected, the temperatures are substantially higher than the model ones, and the measured field-aligned velocities of O+ fluxes are several times higher than the model ones. Moreover, it was revealed that the polar wind outflows are predominantly observed in the polar cap regions where the polar rain fluxes are very small.  相似文献   

18.
Based on satellite data, we present the results of modeling the spatial and energy distributions of integral fluxes of He nuclei (α particles) with E > 1, 2, 4, and 7 MeV at L = 1.1–6.6 in a broad range of B/B 0 (E is the kinetic energy of particles, L is the drift shell parameter, and B/B 0 is the magnetic field ratio). Some ways of practically applying the model are considered. The results of calculation of α-particle fluxes for a circular orbit with a height of 300 km and an inclination of 50° are presented.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 4, 2005, pp. 243–247.Original Russian Text Copyright © 2005 by Getselev, Sosnovets, Kovtyukh, Dmitriev, Podzolko, Vlasova, Reizman.  相似文献   

19.
The results of investigation of the geomagnetic and auroral response to the commencement of a severe magnetic storm of November 20, 2003, are presented. It is established that the onset of SC led to the brightening of the auroral arc in the dusk sector for 2–3 min with its extent to the east with a velocity of 10–20 km/s and to displacement poleward with a velocity of 1.0 km/s. Furtheron, the fast auroral expansions of short duration (5 min) to the pole up to 2–4°were observed, repeating every 5–10 min during 40 min, which led to the spatial modulation of the brightness of the glow and to generation of PSC pulsations with similar periods of oscillations. The broadening of aurora poleward had a steplike character, with generation of new arcs poleward of previous ones 5 arcs per 1.5 min. The modulation of brightness of the glow and PSC were observed against the background of intensification of a two-cell DP2 type current system and were accompanied by multiple turnings of the IMF Bz from south to north and back. It is assumed that the source of PSC pulsations was a modulation of the intensity of the DP2 ionosphere currents as a result of variations of the magnetosphere convection level.Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 608–615.Original Russian Text Copyright © 2004 by Baishev, Borisov, Velichko, Solovyev, Yumoto.  相似文献   

20.
Feldstein  Ya. I.  Gromova  L. I.  Alexeev  I. I.  Kalegaev  V. V. 《Cosmic Research》2003,41(4):359-370
Using the magnetic storm in January 1997 as an example, we examined the possibilities to employ the magnetospheric field T96 [1, 2] and the dynamic paraboloid model PM of the magnetosphere [3] for modeling the D st variation. We have revealed the necessity to refine the results of normalizing the free parameters of the model T96 according to the solar wind parameters. The contributions to the D st variation of magnetic fields of basic large-scale magnetospheric current systems (the field DCF on the magnetopause, the field DR of the ring current, and the field DT in the magnetotail) are estimated for different phases of the storm from model calculations. Possible causes of a discrepancy between the results of modeling D st using the T96 and PM models are discussed. Special emphasis is made on the ratios of contributions into the D st variation of the fields of the magnetotail and the ring current in the main phase of magnetic storms and on the contributions to D st of the fields of various current systems at the recovery phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号