首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
 用Nicalon SiC纤维进行SiC/Al复合材料研究的结果表明,Al对该纤维的润湿性很差。其次,该纤维会与Al发生化学反应损伤纤维从而使其强度下降。因此,寻找一种低温固态复合工艺,如粉浆法,是必要的。粉浆法可避开液态Al不润湿SiC纤维的不利因素,又可降低化学反应速度,从而减少对纤维的化学损伤;此法可在常温下预成形因而可将玻璃的缠绕成型工艺移植到金属基复合材料。  相似文献   

2.
为了探究C纤维和SiC纤维对SiC陶瓷基复合材料力学性能的影响,采用化学气相浸渗法(CVI)制备了纤维束复合材料Mini-C/SiC和Mini-SiC/SiC,测试了C纤维束、SiC纤维束、Mini-C/SiC和Mini-SiC/SiC复合材料的拉伸强度,利用两参数Weibull分布模型研究了强度分布,并观察了复合材料的断口形貌。结果表明:两参数Weibull分布可有效合理地表征强度分布,并准确地进行强度预测。Mini-C/SiC复合材料的拉伸强度高于Mini-SiC/SiC复合材料,且C纤维束和Mini-C/SiC复合材料拉伸强度的分散性低于SiC纤维束和Mini-SiC/SiC复合材料。C纤维束发生韧性断裂,SiC纤维束发生脆性断裂。当基体裂纹达到饱和状态时,Mini-C/SiC复合材料继续变形直至断裂,而Mini-SiC/SiC复合材料随即发生断裂,Mini-C/SiC复合材料的断口主要以纤维丝和纤维簇的拔出为主,而Mini-SiC/SiC复合材料的断口主要以纤维丝的拔出为主。该实验结果将为SiC陶瓷基复合材料的设计与制备提供参考与借鉴。  相似文献   

3.
SiC/SiC复合材料的力学性能   总被引:2,自引:0,他引:2  
采用低压化学气相沉积(LPCVD)法制备了具有热解碳界面层的2.5维SiC/SiC复合材料.研究了残余孔洞及热解碳界面层厚度对材料力学性能的影响.结果表明:材料弯曲强度受纤维束之间大孔的影响很小,主要与纤维间的小孔有关,随小孔尺寸和数量的减小而增大.当气孔率低于27%时,小孔的数量和尺寸均变化不大,材料强度提高有限.90nm厚热解碳界面层的存在使材料由破坏性断裂变为非破坏性断裂,强度由174MPa增加到305MPa.进一步增加界面层厚度,纤维受到损伤,材料的力学性能下降.界面层为180nm和310nm厚时SiC/SiC的强度分别为274MPa和265MPa,纤维拔出数量少,材料近似破坏性断裂.  相似文献   

4.
为考察国产Hi-Nicalon型SiC纤维在高温下的结构-性能演化规律,对国产Hi-Nicalon型SiC纤维分别在空气和氩气环境下进行了不同温度热处理,并对纤维的微观结构及纤维束丝力学性能演化进行了表征与测试。结果表明,在空气环境下,当超过1 100℃时,国产Hi-Nicalon型SiC纤维束丝强度开始下降,伴随着纤维表面生成SiO_2氧化膜,当温度超过1 200℃时,纤维表面会形成SiO_2氧化膜鼓泡。在氩气环境下1 100~1 500℃时,纤维束丝强度开始发生缓慢劣化。当热处理温度超过1 500℃时纤维束丝强度开始加速劣化,伴随着纤维开始发生β-SiC到α-SiC相变以及SiC晶粒尺寸增大。  相似文献   

5.
利用真空压力浸渗法制备了石墨纤维增强的铝基复合材料(Gr/ZL101A),研究了不同的纤维分布状态(SiC颗粒混杂纤维与未混杂的纤维)对复合材料显微组织及弯曲性能的影响。结果表明,SiC颗粒混杂不仅改善了纤维分布均匀性,而且弯曲性能也有明显提高。  相似文献   

6.
通过对SiC纤维增强Ti6Al4V复合材料的拉伸试件断口与界面观察,研究了SiC纤维C涂层对基体与纤维元素扩散、界面反应层厚度与成分、拉伸断口的影响。结果表明,与纤维无C涂层的SiCf/Ti6Al4V相比较,有纤维C涂层的SiCf/Ti6Al4V界面结合强度较弱、反应层厚度较厚,涂层能有效防止纤维性能在复合过程中下降,提高了复合材料拉伸强度。  相似文献   

7.
为了研究环境温度对陶瓷基复合材料拉伸性能的影响,在室温和800℃,1 000℃,1 200℃惰性气体保护环境下开展了二维编织SiC/SiC复合材料的拉伸试验。采用数字图像相关技术采集了高温环境下试件的变形数据。通过光学显微镜和扫描电子显微镜拍摄了试件的断口形貌。结果表明:800~1 200℃内,二维编织SiC/SiC复合材料的拉伸应力-应变响应同样具有明显的双线性特征,初始线性段的弹性模量与室温测试结果相近,高温环境下第二线性段弹性模量低于室温环境;800~1 200℃惰性气体环境下材料拉伸强度较室温环境低20%左右;温度主要影响材料中纤维与基体的结合状态和SiC纤维的强度。一方面,温度越高断口纤维拔出情况越严重;另一方面,温度越高SiC纤维强度越低,二维编织SiC/SiC复合材料强度也有所下降。  相似文献   

8.
采用低浓度先驱体溶液利用先驱体浸渍裂解(PIP)工艺在SiC纤维表面制备了SiC涂层,研究了浸渍裂解次数对纤维涂层形貌的影响.研究表明,采用10%的PCS先驱体溶液经3次浸渍裂解后可在纤维表面制得连续致密的SiC涂层.采用经涂层处理的SiC纤维布经热模压成型-先驱体浸渍裂解工艺制备了2D-SiCf/SiC复合材料,其弯曲强度随制备涂层浸渍裂解次数的增加先增后降,经3次浸渍裂解制备涂层的复合材料强度最高,由未经涂层处理的163.5MPa增大到245.9MPa,强度提高近50%.研究证明,SiC纤维表面SiC涂层使纤维在材料致密化过程所受的损伤减小,同时改善了界面,使复合材料强度明显提高.  相似文献   

9.
先驱体转化法含硼连续SiC纤维研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
含硼连续SiC纤维是很有前景的耐高温陶瓷纤维,室温拉伸强度达到3.0 GPa,耐温1 400℃以上。本文综述了国内外先驱体转化法含硼连续SiC纤维的基本性能和制备方法,并分析比较了各国含硼连续SiC纤维的性能以及制备方法的特点,进而提出制备含硼连续SiC纤维的新思路。  相似文献   

10.
本文介绍了SiC连续纤维、不连续纤维的性能和工业制法,综述了SiC纤维增强铝基复合材料的各种成形加工工艺。  相似文献   

11.
单向Hi-Nicalon/SiC复合材料的工艺与性能   总被引:1,自引:0,他引:1       下载免费PDF全文
对比了采用先驱体转化法及热压法制备的单向Hi-Nicalon纤维增强SiC基复合材料的性能差异,结果表明制备工艺对复合材料的微观结构和性能有极大的影响.采用先驱体转化制备的Hi-Nicalon/SiC复合材料具有较好的性能,弯曲强度为703.6MPa,断裂韧性为23.1MPa@m1/2;两种工艺制备的碳化硅基复合材料性能产生差别的主要原因是高温下Hi-Nicalon纤维的性能下降.  相似文献   

12.
对SiC纤维的CVD涂层工艺进行研究.实验发现采用BCl3,H2及CH4作为反应气体,采用与SiC纤维生产工艺相匹配的走丝速度并控制一定的工艺参数,在1350℃左右可得到厚度2~3mm且表面致密的B4C涂层,纤维涂层后性能基本保持不变.仅采用BCl3及CH4作为CVD涂层工艺反应气体,在1180~1250℃即可沉积出表面光滑致密,厚度2~3mm的富碳B4C涂层,涂层后纤维性能可提高10%左右,且涂层与纤维结合强度很高,优于B4C涂层与SiC纤维的结合强度.实验还发现SiC纤维涂覆B4C及富碳B4C涂层后,能有效阻隔界面反应,可大幅提高SiC/Ti基复合材料的性能.  相似文献   

13.
碳化硅颗粒增强铝基复合材料的研究   总被引:2,自引:0,他引:2  
采用加压浸渗法成功制备了SiC_p/Al(纯)复合材料,探讨了加压浸渗工艺并测定了复合材料的力学性能。试验结果表明,向SiC颗粒内加入适量添加剂后制成的预制件,更有利于铝液的渗透,从而能有效地提高复合材料的强度。试验结果还表明,在本试验范围内(SiC颗粒体积分数30%~50%,颗粒粒径0.1~5μm),复合材料的强度随SiC百分含量的增加而增加,随SiC颗粒粒径的减小而呈上升趋势。  相似文献   

14.
采用CVD工艺在W芯SiC纤维表面涂覆B4C涂层,通过扫描电镜和纤维拉伸测试研究沉积温度和走丝速度对W芯SiC纤维拉伸强度和B4C涂层厚度、表面形貌的影响规律。结果表明,在1100℃以下不能获得B4C涂层。在一定的涂层参数下,可以获得与W芯SiC纤维的拉伸强度最接近(达3339MPa)的带B4C涂层的SiC纤维。且在其他涂层参数不变的情况下,为优化工艺参数,应符合沉积温度>1210℃时,走丝速度>0.055m/s;或沉积温度<1210℃时,走丝速度<0.055m/s。沉积温度影响SiC纤维的拉伸强度和B4C涂层厚度、表面形貌,走丝速度影响SiC纤维的拉伸强度和B4C涂层厚度。  相似文献   

15.
硼/铝复合材料的力学性能与界面   总被引:1,自引:0,他引:1  
本文研究热压工艺对硼纤维以及硼/铝复合材料强度的影响,并探讨纤维与基体间的结合模式。为此目的,用腐刻法从硼/铝复合材料中提取硼纤维,制得不同状态下的硼纤维强度的频率分布图。用X射线衍射与电子探针技术,检测界面附近的组成及元素分布。结果表明,碳化硼(B_4C)涂层有效地阻止硼—铝间的界面反应:硼/铝复合材料的抗拉强度随着界面结合状态的改善而提高;在复合过程中造成纤维降解的损伤,通常发生在纤维局部存在缺陷的地区。  相似文献   

16.
对等温化学气相渗透法(ICVI)制备的C/SiC复合材料进行热处理,利用声发射(AE)技术对热处理前后C/SiC试样拉伸过程声发射累积能量进行分析,通过SEM进行微结构观察。结果表明:界面层较薄的C/SiC试样经1 500℃热处理后拉伸强度与初始强度相近,经1 700和1 900℃热处理后拉伸强度显著提高,其断裂应变随着热处理温度升高而大幅提高,弹性模量却呈现下降趋势;界面层较厚的C/SiC试样经1 500和1 700℃热处理后拉伸强度变化不大,断裂应变显著提高,弹性模量逐渐降低,经1 900℃热处理后拉伸强度和断裂应变开始下降,而弹性模量变化较小。热处理可以显著提高C/SiC的韧性,在拉伸过程中的断裂功和声发射累积能量均显著增加。界面层较薄的C/SiC断裂模式从脆性逐渐向韧性转变,而界面层较厚的C/SiC热处理后韧性进一步提高。  相似文献   

17.
采用箔—纤维—箔方法制备了连续SiC纤维增强Ti_3Al基复合材料(SiC_f/Ti_3Al),测定了两种SiC纤维增强Ti_3Al基复合材料的力学性能,分析了热处理工艺对复合材料力学性能的影响,讨论了复合材料在不同条件下的断裂机制研究表明,国产SiC纤维(无碳涂层)增强Ti_3Al复合材料的界面结合强度高于有碳涂层纤维增强的复合材料,力学性能却低于SCS-6纤维(有碳涂层)增强的复合材料。当热处理时间延长时,SCS-6/Ti_3Al复合材料界面反应层厚度增加,复合材料的力学性能下降。  相似文献   

18.
主要研究无界面层、裂解碳和氮化硼3种界面层体系对SiCf/SiC复合材料力学性能的影响:首先,三维四向编织的SiC纤维预制体分别经过无界面层处理、裂解碳界面层制备(CVI工艺)和BN界面层制备(PIP工艺)3种不同工艺处理;以聚碳硅烷为原料,采用PIP工艺制备出3种SiCf/SiC陶瓷基复合材料工艺试验件;对工艺试验件的基本力学性进行研究,评价不同纤维预制体处理工艺对材料性能的影响。研究结果表明,无涂层复合材料样品的弯曲强度最高;具有PyC涂层复合材料的弯曲强度略有下降,但断裂韧性较高;具有BN界面层的复合材料弯曲强度和断裂韧性均出现了较大程度的降低。3个样品力学性能的差别主要与纤维/界面层/基体之间作用力有关。本研究结果可以用于SiCf/SiC复合材料构件制造工作中,为制造工艺的初步筛选提供参考依据。  相似文献   

19.
以不同界面层厚度的SiC纤维为增强相,采用先驱体浸渍裂解工艺(PIP)制备SiCf(PyC)/SiC复合材料,并在复合材料基体中引入SiC晶须,对其性能进行研究。结果表明:热解碳(PyC)界面层厚度约为230 nm时,SiC纤维拔出明显,SiCf/SiC复合材料拉伸强度、弯曲强度和断裂韧度分别达到192.3 MPa、446.9 MPa和11.4 MPa?m1/2;在SiCf/SiC复合材料基体中引入SiC晶须后,晶须的拔出、桥连及裂纹偏转等增韧机制增加了裂纹在基体中传递时的能量消耗,使复合材料的断裂韧度和弯曲强度分别提高了22.9%和9.1%。  相似文献   

20.
SiC/SiC mini复合材料拉伸性能分散性的数值仿真方法   总被引:1,自引:1,他引:0  
建立了一种能够高效计算连续纤维增强SiC/SiC陶瓷基复合材料力学性能统计分布函数的数值仿真方法。建立SiC/SiC mini复合材料简化二维胞元模型,输入组分材料力学性能参数的概率分布函数,得到胞元的力学性能。将胞元作为mini复合材料二维模型的单元对模型进行网格划分,并赋予其材料性能参数,从而得到mini复合材料的拉伸应力-应变曲线。经多次重复计算得到了mini复合材料拉伸应力-应变曲线的概率分布函数。从结果中发现,SiC/SiC mini复合材料拉伸强度满足威布尔分布,且相比于纤维和基体强度的模数,复合材料拉伸强度的模数增大,即分散性减小,同时尺度参数降低,表明mini复合材料出现概率最大的拉伸强度值变小;随着纤维和基体强度概率分布威布尔模数的增大,mini复合材料拉伸强度的尺度参数有增大的趋势。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号