首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kevlar/Nomex蜂窝夹层结构微带阵天线电气板的研制   总被引:2,自引:0,他引:2  
微带天线广泛应用于星载合成孔径雷达天线.文章对Kevlar/Nomex蜂窝夹层结构微带天线的材料、制造技术进行了分析.结果表明,微带天线采用Kevlar/Nomex蜂窝夹层结构制造工艺,能够满足设计要求.  相似文献   

2.
文章以微带天线的基本电磁场理论为依据,对微带天线的结构进行了深入的研究。通过建模仿真,设计频带为4.5GHz~5.0GHz的天线,要求在该频段天线的驻波比VSWR〈1.6,平均增益为28~29.5dB。在设计中采用微带U_Slot矩形贴片作为单元,引入π结构,采用近邻耦合方式进行馈电,组成天线阵列来实现。设计结果通过实验室提供的天线测量设备进行测试,软件仿真结果与实际测量结果有较好的一致性。  相似文献   

3.
针对微带天线的阻抗频带窄的缺点,分析比较了扩展微带天线频带宽度的几种途径。通过采用双层结构的加寄生元的参差调谐技术,使微带天线元的阻抗频带宽度得到了显著地提高。并以此宽频带微带天线为阵元,设计了四元串馈阵和四元并馈阵两种形式的微带天线阵。实验结果表明,这两种馈电形式的微带天线阵均能满足高分辨率微波遥感成像雷达对天线阵阻抗带宽的要求。  相似文献   

4.
介绍一种叠层双频圆极化微带天线 ,它有低剖面 ,重量轻 ,体积小等优点。这种双频微带天线利用圆形微带天线辐射贴片中心的谐振电阻为 0的特性 ,将两个频带的圆极化微带天线层叠放置 ,形成一个双频工作的圆极化微带天线  相似文献   

5.
文章提出了一种三角形缝隙微带天线,在贴片表面开槽实现了双频,且天线能够工作在Ls波段和S波段上,并保证了相应的带宽;通过截去三角形的一角和选择合适的馈电点,实现了天线的圆极化,同时也展宽了轴比带宽;通过理论分析和计算机优化,给出了天线的具体参数。  相似文献   

6.
文章介绍了一种Ku波段的双线极化微带天线单元设计。为了提高两馈电端口的隔离度,天线单元的耦合槽采用“H”形状且互相垂直。用商业应用软件IE3D对天线电特性进行仿真计算,并制作了实验模型。测量结果与仿真结果吻合良好。两馈电端口反射损耗>10dB,阻抗带宽分别为21.32%和22.13%,隔离度高于36dB。  相似文献   

7.
C频段双线极化高隔离度微带天线设计   总被引:1,自引:0,他引:1  
研究一种工作在C频段(5.25GHz^5.75GHz)的双线极化高隔离度微带天线,天线由2×2微带缝隙耦合天线阵列及其馈电网络组成。使用HFSS仿真软件对该天线进行仿真和优化,得到了较好的结果,在整个频段内驻波比低于1.30,隔离度大于30dB,天线在5.5GHz的水平极化增益达到13.53dB,垂直极化增益达到13.8dB。与常规的双线极化微带天线相比,该天线具有高隔离度、高增益的特点。  相似文献   

8.
大频差单馈双频双层微带天线研究   总被引:2,自引:0,他引:2  
文章采用等效电路法分析了大频差下单探针馈电的双频双层微带天线的特性。由于天线工作于3GHz和10GHz这两个相差甚远的频率上,并且两层贴片只用一根同轴探针进行馈电,这时微带天线会呈现很多特殊的问题。分析结果表明,尽管下层微带贴片在10GHz附近的高次模会较大地影响天线的性能,采用这种结构还是可以实现双频工作的。  相似文献   

9.
介绍了一种优良的微带天线——交叉馈电微带天线阵,并对其进行了分析、研究,给出了设计要点。  相似文献   

10.
文章研究了微带天线的设计,论述了其结构及应用,介绍了设计流程和要求,并利用HFSS设计了一个用于飞机测高的天线,中心频率在444MHz。仿真结果表明,所设计的微带天线有较好的辐射特性,满足设计要求。  相似文献   

11.
文章提出了一种实现三角形微带天线宽频工作的新方法。通过添加一对与三角形中心线对称的L形缝隙,天线可以实现双频工作。改变L形缝隙的位置和尺寸,天线可以实现双频比在1.03—1.35范围内的调节,利用Ansoft仿真软件HFSS进行优化,当频率比为1.03时天线可以实现宽频工作。制作了实际的宽带天线,测量结果与仿真结果吻合,实测天线的相对工作带宽(VSWR〈2)为5.39%,是普通三角形微带天线的4.5倍,证明了所提出方法的有效性。  相似文献   

12.
针对低剖面微带天线带宽窄的问题,设计了一种高度仅为0.11λ0的双层贴片开槽微带天线,通过双贴片同时馈电的方式,展宽了微带天线的带宽,实现了驻波带宽达到17.9%。经过HFSS (High Frequency Structure Simulator,高频结构仿真器)设计仿真结果表明:该天线单元具有良好的阻抗匹配特性,驻波带宽在17.9%,增益为5.89 d B,符合宽带天线的标准。将该天线单元组成6×6阵列,通过仿真分析得出,天线在31.0 GHz~36.5 GHz频带范围内VSWR(电压驻波比)≤2,相对带宽达到16.4%,增益达到20.28 d B,-60°~60°扫描范围内具有良好辐射特性。该天线具有小型化、易于集成、制造简单等优点,可用于多种通信系统中,应用前景良好。  相似文献   

13.
圆极化双层微带天线的研究   总被引:4,自引:0,他引:4  
利用经验公式和软件仿真结合的方法分别设计 S波段、C波段的圆极化双层微带天线 ,在驻波比 VSWR小于 2的情况下 ,天线的阻抗带宽达到 1 8.2 %。对双层微带天线工作在不同频段时的圆极化特性进行研究 ,并对 C波段出现的轴比变差、方向图不对称问题提出了改进措施  相似文献   

14.
文章设计了一种电容耦合四点馈电的宽带双层微带天线,该天线可以工作在北斗、GPS、GALILEO和GLONASS四大导航卫星工作频段,可以用作导航系统地面终端天线.天线单元采用电容耦合四点馈电的双层空气微带圆极化天线形式,在双点谐振特性的双层空气微带天线基础上,结合电容耦合馈电技术构成三点谐振特性,进一步展宽天线带宽.为了实现低剖面、小型化、微带形式的宽带馈电网络采用双层结构集成设计,由Wilkinson功分器和宽带Schiffman移相器实现相应的幅相配置.对提出的天线进行了仿真设计和优化,仿真设计结果表明,在四大卫星导航卫星系统1.1 GHz~1.6GHz工作频段内,天线电压驻波比小于1.4,增益方向图和圆极化轴比特性都满足设计要求,该天线可以很好地应用于地面多模用户终端.  相似文献   

15.
张群  刘波 《空间电子技术》2009,6(4):88-90,98
迄今为止,多数文献只着眼于通过采用多层贴片结构来展宽微带天线的阻抗带宽,这使天线的可调参数多、结构安装复杂,对于带宽要求比较苛刻的情况可以通过多层贴片叠带来实现;对于带宽要求不太苛刻的情况,可以采用泪珠状探针来展宽微带天线的带宽。文章着重强调的是泪珠状探针可以减弱探针带来的电感效应,实现阻抗匹配,使得微带天线在满足VSWR≤1.3的条件下,带宽可以达到5%以上;满足VSWR≤1.5的条件下,带宽可以达到8%以上;满足VSWR≤2的条件下,带宽可以达到15%以上。  相似文献   

16.
微波无线能量传输摆脱了传统能量传输的电缆限制,可以满足多个领域的应用需求,整流天线是完成微波-直流能量转换的重要装置。目前常规整流天线中存在的滤波器、阻抗匹配网络等损耗及常规微带天线的窄带特性,使得其效率及带宽等特性存在可提升的空间。文章在回顾滤波天线及整流天线的发展现状的基础上,提出将滤波天线的概念与整流电路相结合,开展滤波整流天线技术研究。将天线单元作为滤波器电路理论中的谐振单元开展滤波整流天线建模和分析理论研究,设计具有辐射、滤波、复数阻抗匹配等功能的天线及阵列结构,有望突破整流天线高效集成的技术难点,为微波无线能量传输效率提升提供技术基础。  相似文献   

17.
本文介绍了一种可用于微带天线测试的TRL测试校准技术,给出了这种校准技术的理论依据,推导过程及误差分析。由于这种校准方式测试误差较小,因此得到了广泛的应用。  相似文献   

18.
邱景辉  索莹  林澍  袁业术 《宇航学报》2008,29(6):1970-1973
微带天线是一种小型化、低剖面、可共形天线,研究了采用双层双排平行放置贴 片形式的二元微带贴片天线阵,通过缝隙耦合的馈电形式,可实现S波段宽频带通信技术要 求。给出了此类天线的设计方法,讨论了基片厚度对天线辐射特性的影响;通过基于时域有 限积分法的CST软件包仿真计算,得到该天线端口反射系数小于-10dB(VSWR<2)的相对带宽 为24%,满意的方向图带宽和增益特性,理论计算结果与实测值保持一致,验证了这种结 构天线较好的实际应用性能。  相似文献   

19.
为研究雷达导引头机电伺服系统中的机电驱动机构特性,引入扭转刚度,建立了永磁式直流伺服电机驱动机构的传递函数模型,给出了电机与负载刚性和弹性连接两种条件下的传递函数.用频域拟合获得实际系统的传递函数.结果表明:测试结果与理论分析一致.该法对机电伺服系统设计和分析有一定的参考意义.  相似文献   

20.
双H形槽减缩微带天线RCS   总被引:2,自引:0,他引:2  
开槽早已在微带天线的设计中有所应用,主要是用来改善辐射性能,虽然在天线雷达散射截面减缩中也有应用,但带内减缩效果不太明显。文章结合加载短路针的方式,经过大量仿真实验,找到了一种能很好减缩RCS同时辐射性能降低很少的开槽方式———双H形槽。文章给出了双H形槽的辐射性能及散射特性,并与原天线做了分析比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号