首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
基于全柔性卫星模型的控制闭环微振动建模与仿真   总被引:4,自引:3,他引:4  
针对高分辨率遥感卫星的微振动分析,给出了一种整星结构运动与姿态控制系统闭环的建模方法。该方法基于全柔性卫星模型,通过考虑姿态控制系统的控制律和硬件特性建立集成仿真模型,进而预测卫星在轨微振动的微振动响应和结构传递特性。文章以某遥感卫星为例,分别从开环和闭环角度给出了微振动的微振动响应和结构传递特性的结果,并进行对比分析。分析结果表明:提出的方法能够实现全柔性卫星模型的控制闭环微振动分析,相对于传统的开环仿真更接近在轨实际情况。  相似文献   

2.
文章针对高分辨率遥感卫星的微振动分析,给出了一种结构-控制-光学一体化建模方法:将微振动干扰源模型、整星结构模型、控制系统模型和光学系统模型按照实际的物理联系连接为一个整体,进而预测空间相机在轨微振动的像移响应和干扰源到像移的传递特性。以某遥感卫星为例,将其微振动下的像移响应和传递特性与工程中的其他处理方法的计算结果进行了对比分析。研究结果表明:一体化建模分析方法从原理上更接近卫星在轨实际工作情况,能够给出较为合理的微振动分析结果;其他工程处理方法的分析结果均与一体化建模分析方法有差异,使用时应根据设计和分析的具体目的与条件恰当选择。  相似文献   

3.
力学环境测量系统首次搭载于“海洋二号”遥感卫星并开展了卫星在轨动力学环境的测量。文章主要介绍了利用该测量系统对主动段和自由飞行段卫星关键设备和关键部位动力学环境的测量情况,包括主动段卫星振动响应及其结构传递,自由飞行段卫星活动部件工作引起的微振动以及传递到光学敏感器上的微振动响应等;根据测量结果进行了力学响应分析。由于是首次开展在轨动力学环境的测量,所以获得的结果非常宝贵,对于完善、修正卫星分析模型具有重要的价值,可为卫星地面力学试验条件的确定提供参考依据。  相似文献   

4.
随着观测精度的提高,卫星观测设备对微振动愈加敏感,需要在地面开展卫星在轨微振动环境模拟试验及测试验证,而卫星在轨自由边界条件的模拟对于提高地面试验的有效性至关重要。文章提出了一种低频弹性支撑方法,用于模拟卫星在轨飞行时的自由边界条件;并基于该方法,设计和研制了一套模拟试验装置,通过模态和频率响应分析以及型号的整星微振动模拟试验,评估了模拟自由边界条件对卫星动力学特性的影响,也证明了低频弹性支撑模拟方法的有效性。  相似文献   

5.
为了研究高精度航天器微振动试验中模拟自由边界附加质量对卫星动力学特性的影响,建立考虑附加质量的卫星地面微振动试验模拟自由边界理论模型,与卫星结构动力学模型仿真结合,分析附加质量对卫星模态频率和频率响应的影响规律。在此基础上,以施加不同附加质量的卫星结构模拟试验件为实验对象,测试验证了附加质量对卫星结构动力学特性的影响。结果表明,附加质量对结构模态频率和频率响应产生明显影响,附加质量越大,对卫星动力学特性影响越大,且对频率响应峰值的影响更加突出。据此,提出附加质量应控制在卫星总质量的5%以内,以避免其在地面微振动试验中给卫星的动力学特性及微振动响应带来严重影响。  相似文献   

6.
敏捷型遥感卫星在轨运行期间,星上控制力矩陀螺等扰动源会引起微振动,微振动传递到高分辨率相机等敏感载荷会影响载荷性能,进而影响卫星成像质量,因此需对传递到敏感载荷的微振动进行抑制,以保证卫星高分辨率指标的实现。以高分多模卫星(GFDM-1)的微振动抑制需求为背景,确定了整星微振动抑制技术路线与微振动抑制总体方案,开展了扰动源特性研究,完成了扰动源、星体结构和敏感载荷的减隔振设计与验证,并通过星载微振动测量设备对相机等关键位置的在轨微振动响应进行了测量,对卫星微振动抑制方案进行了飞行验证。在轨微振动测量数据表明:高分多模卫星微振动抑制方案可有效满足敏感载荷相机的微振动抑制需求,可为我国后续敏捷遥感卫星的微振动抑制设计与验证提供参考。  相似文献   

7.
为研究抑制星载大型反射面天线的在轨振动,文章给出一种基于压电材料的天线臂主动振动抑制建模分析方法。该方法基于整星刚柔耦合动力学模型,通过将压电材料的应力等价为内力矩,应变等价为位移差分,获得卫星动力学、振动抑制与姿态控制的解析式耦合计算模型,进而预测振动抑制后的天线振动传递特性和响应。以某带大型反射面天线的卫星为例,分别从压电材料布局和计算边界条件角度给出主动振动抑制的时域、频域分析结果,并进行对比。分析结果表明:文章所提出的方法能够实现压电材料在天线臂上的布局优化以及获知天线臂主动振动抑制效果。  相似文献   

8.
为准确测量某卫星平台真实飞行过程发射主动段结构动力学响应及入轨阶段星板结构微振动特性,设计了一种新型MEMS振动测量系统,综合实现对卫星主动段及在轨阶段振动特性测量。针对卫星发射主动段振动冲击大、频谱范围宽且入轨段振动信号振幅和频率较低的特点,测量系统采用了大量程宽带压电式加速度计,以及国产MEMS加速度计和陀螺仪集成设计方案。卫星主动段各关键时段及在轨段各测量工况下的时域和频域冲击振动分析结果表明:测量系统压电加速度计、MEMS加速度计和MEMS陀螺仪均工作正常,测试数据完整有效,测量精度满足卫星结构动力学分析要求,输出结果符合指标要求,已具备产品化条件,具有广阔的应用前景。  相似文献   

9.
卫星微振动引发的结构微角振动限制了高精度卫星指向精度和姿态控制稳定性,因此有必要对其进行在轨测量。为准确测量卫星结构微角振动,文章在对比不同的测量方法后,提出了一种基于磁流体动力学(Magnetohydrodynamics,MHD)微角振动传感器的卫星结构微角振动高精度测量方法,并针对由动量轮引起的有效载荷微角振动的特性,进行了仿真和试验验证。试验结果表明,其测量精度满足现阶段卫星控制的要求。此方法能为卫星扰动源的定位及卫星的主动减振反馈提供依据。  相似文献   

10.
针对航天器舱内在轨释放任务,文章建立了大型航天器与伴随卫星的动力学模型和运动学模型,并分析了影响释放安全性的主要因素;从保证航天器在轨安全的角度,得到描述释放安全性的最小相对距离计算方法,并利用ADAMS软件对航天器在轨释放过程进行了仿真研究。  相似文献   

11.
某型号卫星微振动试验研究及验证   总被引:1,自引:0,他引:1  
某型号卫星地面像元分辨率优于1 m,对成像质量要求很高。微振动成为制约该型号成像质量提升的关键因素之一。在完成微振动对成像质量影响的仿真分析后,对仿真分析的有效性和正确性进行了试验验证。该卫星微振动试验按照单机、分系统、系统和大系统4个层次展开:单机级试验主要通过六分量力测量微振动源的动态特性;分系统级试验主要通过结构加速度响应测量解决微振动传递特性是否正确的问题;系统级试验主要通过成像质量来验证微振动对光学系统影响的分析方法;大系统级试验主要通过在轨图像分析验证相关结论。上述试验对微振动从产生、传递到影响的各个环节进行了测试和验证。最终试验结果表明微振动相关工作达到预期目的,图像质量得到保证。  相似文献   

12.
针对某新型气象卫星的在轨微振动测量需求,分析微振动对于卫星及其精密载荷的影响,提出一种具有可切换量程和较高故障容错能力的卫星微振动测量单元设计方案.通过地面试验数据与在轨数据的对比,证明该系统能够准确辨识整星及高精度载荷在不同工况下的微振动力学数据.该系统功能的成功实现为进一步优化星体结构、改善高精度载荷工作环境提拱了...  相似文献   

13.
光学遥感卫星微振动抑制方法及关键技术   总被引:1,自引:0,他引:1  
针对光学遥感卫星面临的微振动对成像质量影响的问题,对微振动抑制设计方法和关键技术进行了论述。首先对动量轮、控制力矩陀螺、扫摆机构等主要扰动源的机理和特征进行分析,然后从传递路径设计、微振动源抑制、降低有效载荷敏感性三个方面介绍了微振动抑制方法,最后结合遥感卫星的研制过程给出了微振动抑制设计的实例。  相似文献   

14.
为获取航天器准确的发射及在轨力学环境数据,设计了一套具有数据采集、存储和传输功能的星载测量系统。利用该系统对某大型平台卫星发射飞行过程进行了测量,获取了星箭界面及卫星结构典型位置在发射主动段的正弦振动响应、随机振动响应、冲击响应及在轨微振动的环境数据。将测量数据与星箭载荷耦合分析结果、地面力学试验结果进行了详细对比,结果表明:星箭载荷耦合分析的结果在星箭界面处横向相对准确,而纵向在有限频段准确,其他频段及星上分析结果均大于测量结果,即存在极大裕度;地面试验结果大于测量结果,意味着有较大的裁剪设计空间。测量数据对后续卫星模型修正、试验条件设计、相似平台卫星抗力学环境优化、部组件设计等均具有重要的参考价值。  相似文献   

15.
一种星上微振动引起像移量的测量方法   总被引:1,自引:0,他引:1  
基于多色CCD各谱段分时成像的特点,提出一种高分辨率光学遥感卫星星上微振动引起像移量的测量方法。该方法依据多色CCD不同时刻获取地面同一景物的不同谱段图像间的匹配像移量差异,确定星上微振动引起的像移量。研究实例证明了文章提出方法的可行性,结果表明,频率越低,微振动引起的像移量越大,因此,应对高分辨率光学遥感卫星的微振动,尤其是低频部分进行有效抑制。  相似文献   

16.
为了解决星上微振动引起的空间摆臂式傅里叶干涉仪(下文简称干涉仪)运动速度稳定度下降的问题,分析了干涉仪在轨减振任务的特点,提出了同时采用低刚度隔振与高灵敏度阻尼抑振的一体化设计方法,实现了干涉仪超静超稳平台的系统设计。平台采用被动隔振技术隔离卫星中、高频的机械振动,实现干涉仪在轨的“静”,采用电磁阻尼技术消除隔振过程引入的低频共振和晃动,保证干涉仪在轨的“稳”。地面微振动试验中,平台引入后,干涉仪安装位置加速度响应满足微振动环境要求,干涉仪性能稳定,载荷工作正常。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号