共查询到5条相似文献,搜索用时 0 毫秒
1.
Analysis and design of low-energy transfers to the Moon has been a subject of great interest for decades. Exterior and interior transfers, based on the transit through the regions where the collinear libration points are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is concerned with a geometrical approach for low-energy Earth-to-Moon mission analysis, based on isomorphic mapping. The isomorphic mapping of trajectories allows a visual, intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Two types of Earth-to-Moon missions are considered. The first mission is composed of the following arcs: (i) transfer trajectory from a circular low Earth orbit to the stable invariant manifold associated with the Lyapunov orbit at L1 (corresponding to a specified energy level) and (ii) transfer trajectory along the unstable manifold associated with the Lyapunov orbit at L1, with final injection in a periodic orbit around the Moon. The second mission is composed of the following arcs: (i) transfer trajectory from a circular low Earth orbit to the stable invariant manifold associated with the Lyapunov orbit at L1 (corresponding to a specified energy level) and (ii) transfer trajectory along the unstable manifold associated with the Lyapunov orbit at L1, with final injection in a capture (non-periodic) orbit around the Moon. In both cases three velocity impulses are needed to perform the transfer: the first at an unknown initial point along the low Earth orbit, the second at injection on the stable manifold, the third at injection in the final (periodic or capture) orbit. The final goal is in finding the optimization parameters, which are represented by the locations, directions, and magnitudes of the velocity impulses such that the overall delta-v of the transfer is minimized. This work proves how isomorphic mapping (in two distinct forms) can be profitably employed to optimize such transfers, by determining in a geometrical fashion the desired optimization parameters that minimize the delta-v budget required to perform the transfer. 相似文献
2.
B. B. Kreisman 《Cosmic Research》2016,54(6):475-482
Horseshoe orbits in the restricted three-body problem have been mostly considered in the Sun–Jupiter system and, in recent years, in the Sun–Earth system. Here, these orbits have been used to find asteroids that have orbits of this kind. We have built a planar family of horseshoe orbits in the Earth–Moon system and determined the points of planar and 1/1 vertical resonances on this family. We have presented examples of orbits generated by these spatial families. 相似文献
3.
《Acta Astronautica》2013,82(2):456-465
The out-of-plane amplitude along quasi-periodic trajectories in the Earth–Moon system is highly sensitive to perturbations in position and/or velocity as underscored recently by the ARTEMIS spacecraft. Controlling the evolution of the out-of-plane amplitude is non-trivial, but can be critical to satisfying mission requirements. The sensitivity of the out-of-plane amplitude evolution to perturbations due to lunar eccentricity, solar gravity, and solar radiation pressure is explored and a strategy for designing low-cost deterministic maneuvers to control the amplitude history is also examined. The method is sufficiently general and is applied to the L1 quasi-periodic orbit that serves as a baseline for the ARTEMIS P2 trajectory. 相似文献
4.
The application of dynamical systems techniques to mission design has demonstrated that employing invariant manifolds and resonant flybys enables previously unknown trajectory options and potentially reduces the ΔV requirements. In this investigation, planar and three-dimensional resonant orbits are analyzed and cataloged in the Earth–Moon system and the associated invariant manifold structures are computed and visualized with the aid of higher-dimensional Poincaré maps. The relationship between the manifold trajectories associated with multiple resonant orbits is explored through the maps with the objective of constructing resonant transfer arcs. As a result, planar and three-dimensional homoclinic- and heteroclinic-type trajectories between unstable periodic resonant orbits are identified in the Earth–Moon system. To further illustrate the applicability of 2D and 3D resonant orbits in preliminary trajectory design, planar transfers to the vicinity of L5 and an out-of-plane transfer to a 3D periodic orbit, one that tours the entire Earth–Moon system, are constructed. The design process exploits the invariant manifolds associated with orbits in resonance with the Moon as transfer mechanisms. 相似文献
5.
The DB-8 detectors of the ISS radiation monitoring system (RMS) have operated almost continuously onboard the ISS service module since August 2001 till December 2014. The RMS data obtained were used for the daily monitoring of the radiation environment aboard the station. This paper considers the technique of RMS data analysis that allows one to distinguish the contributions of galactic cosmic rays and the Earth’s inner radiation belt to the daily dose based on the dosimetry data obtained as a result of the station’s passage in areas of the highest geomagnetic latitudes. The paper presents the results of an analysis of the dosimetry data based on this technique for 2005–2011, as well as a comparison with similar results the authors obtained previously using the technique based on an analysis of the dosimetry data obtained during station passages in the area of the South Atlantic Anomaly. 相似文献