首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Sun?s gravity focus at >550 AU is of interest to astrophysicists including SETI scientists, researchers seeking to image extra-solar planets and others. One method for an extra-solar probe to reach the Sun?s inner gravity focus within a human working lifetime (less than 50 years) is to combine solar and nuclear propulsion techniques. Here, we present a non-optimized probe concept including state-of-the-art solar-sail, radioisotope-electric propulsion and giant-planet gravity assists. Application of radioisotope propulsion allows some cross range capability during and after the powered and cruise phases of the flight to >600 AU. Such a capability is likely necessary to fully utilize the solar gravitational lens effect for SETI and astrophysical observations.  相似文献   

2.
《Acta Astronautica》1999,44(2-4):141-146
Aurora spacecraft is a scientific probe propelled by a “fast” solar sail whose first goal is to perform a technology assessment mission. The main characteristic of the sail is its low mass, which implies the absence of a plastic backing of the aluminum film and the lightness of the whole structure. In previous structural studies the limiting factor has been shown to be the elastic stability of a number of structural members subject to compressive loads. An alternative structural layout is here suggested: an inflatable beam, which is kept pressurized also after the deployment, relieves all compressive stresses, allowing a very simple configuration and a straightforward deployment procedure. However, as the mission profile requires a trajectory passing close to the Sun, a configuration different from the ‘parachute’ sail proposed in another paper, must be used.  相似文献   

3.
4.
How to exploit the Sun as a gravitational lens has been studied extensively during the last 20 years, especially by this author (Refs. 1, 2, 3, 4, 5, 6 and 7). In essence, a spacecraft dubbed FOCAL (an acronym for “Fast Outgoing Cyclopean Astronomical Lens”) should be launched in the direction of the sky opposite to the area of the sky we wish to see highly magnified both at radio and other frequencies. After FOCAL reached the minimal focal distance of 550 AU from the Sun, highly magnified radio images of celestial objects located on the opposite side of the Sun will automatically be produced. In this paper we apply the FOCAL mission concept to the goal of exploring the neighborhood of the Alpha Centauri B star, where the nearest exoplanet to the Solar system was recently discovered. We suggest that:  相似文献   

5.
电动帆是一种新兴的无推进剂损耗的推进方式,利用太阳风的动能冲力飞行。电动帆由数百根长而细的金属链所组成,这些金属链通过空间飞行器自旋展开,太阳能电子枪向外喷射电子,使金属链始终保持在高度的正电位,这些带电的金属链会排斥太阳风质子,利用太阳风的动能冲力推动空间飞行器驶向目标方向。针对电动帆轨迹优化问题,提出采用Gauss伪谱法进行轨迹优化,克服了间接法对协态变量初值敏感的缺点。考虑在太阳风暴等原因造成特征加速度改变的情况,基于Gauss伪谱法实现电动帆在线轨迹重新规划,提高电动帆对太阳风不确定性的适应能力。最后以太阳系外探测任务为例,对电动帆和太阳帆的性能进行对比,仿真结果表明电动帆在星际远航任务中所用时间较短。  相似文献   

6.
太阳帆日心定点悬浮转移轨道设计   总被引:1,自引:0,他引:1  
研究了太阳帆航天器日心定点悬浮轨道(HFDO)的转移轨道设计问题,以球坐标形式建立了太阳帆的动力学模型,基于该模型给出在日心悬浮轨道基础上实现定点悬浮的条件,提出了一种实现日心定点悬浮的转移轨道设计方法。首先,确定定点悬浮的位置;然后,设计经过该位置的绕日极轨轨道;最后,实施轨道减速实现定点悬浮,并给出了解析形式的轨道控制律。结合太阳极地观测任务,设计了定点悬浮在太阳北极1AU处的太阳帆转移轨道。仿真结果表明:该轨道转移方案总耗时3.5年,太阳帆定点到黄北极距日心1AU处,此后只要保持太阳光垂直照射帆面,即可维持稳定的悬浮状态。  相似文献   

7.
A new and innovative type of gridded ion thruster, the “Dual-Stage 4-Grid” or DS4G concept, has been proposed and its predicted high performance validated under an ESA research, development and test programme. The DS4G concept is able to operate at very high specific impulse and thrust density values well in excess of conventional 3-grid ion thrusters at the expense of a higher power-to-thrust ratio. This makes it a possible candidate for ambitious missions requiring very high delta-V capability and high power. Such missions include 100 kW-level multi-ton probes based on nuclear and solar electric propulsion (SEP) to distant Kuiper Belt Object and inner Oort cloud objects, and to the Local Interstellar medium. In this paper, the DS4G concept is introduced and its application to this mission class is investigated. Benefits of using the DS4G over conventional thrusters include reduced transfer time and increased payload mass, if suitably advanced lightweight power system technologies are developed.A mission-level optimisation is performed (launch, spacecraft system design and low-thrust trajectory combined) in order to find design solutions with minimum transfer time, maximum scientific payload mass, and to explore the influence of power system specific mass. It is found that the DS4G enables an 8-ton spacecraft with a payload mass of 400 kg, equipped with a 65 kW nuclear reactor with specific mass 25 kg/kW (e.g. Topaz-type with Brayton cycle conversion) to reach 200 AU in 23 years after an Earth escape launch by Ariane 5. In this scenario, the optimum specific impulse for the mission is over 10,000 s, which is well within the capabilities of a single 65 kW DS4G thruster. It is also found that an interstellar probe mission to 200 AU could be accomplished in 25 years using a “medium-term” SEP system with a lightweight 155 kW solar array (2 kg/kW specific mass) and thruster PPU (3.7 kg/kW) and an Earth escape launch on Ariane 5. In this case, the optimum specific impulse is lower at 3500 s which is well within conventional gridded ion thruster capability.  相似文献   

8.
While solar electromagnetic radiation can be used to propel a solar sail, it is shown that the Poynting–Robertson effect related to the absorbed portion of the radiation leads to a drag force in the transversal direction. The Poynting–Robertson effect is considered for escape trajectories, Heliocentric bound orbits and non-Keplerian bound orbits. For escape trajectories, this drag force diminishes the cruising velocity, which has a cumulative effect on the Heliocentric distance. For Heliocentric and non-Keplerian bound orbits, the Poynting–Robertson effect decreases its orbital speed, thereby causing it to slowly spiral towards the Sun. Since the Poynting–Robertson effect is due to the absorbed portion of the electromagnetic radiation, degradation of a solar sail implies that this effect becomes enhanced during a mission.  相似文献   

9.
The possibility of using the mode of single-axis solar orientation is considered for a satellite placed into a nearly circular orbit with an altitude of 900 km and bearing a solar sail. The satellite (together with the sail) has an axisymmetric structure, its symmetry axis being the principal central axis of the maximum moment of inertia. The center of the sail pressure lies on this axis and is displaced with respect to the satellite's center of mass. The symmetry axis of the satellite is set to the Sun so that its center of mass would be located between the Sun and the pressure center and would rotate around this axis with an angular velocity of a few degrees per second. The satellite's axis of symmetry makes a slow precession under the action of the gravitational moment and the moment of light pressure forces. Though the maximum magnitudes of these moments are comparable, the moment of the light pressure forces dominates and controls the precession in such a way that the symmetry axis orientation to the Sun remains unchanged.  相似文献   

10.
《Acta Astronautica》1999,44(2-4):123-132
The thrust model for computing a sailcraft trajectory contains thermo-optical parameters that are averages over the spectrum of the incident photons, namely, with respect to energy, intensity and polarization. These parameters are not observables and could change considerably from a sail to sail for a number of practical reasons. The mission analysis for a sailcraft is a progressive task from a simple trajectory propagator to the orbit determination. Aurora sailcraft mission analysis has advanced another step forward by processing experimental data related to aluminium. Once appropriate fitting functions have been selected, differential specular and diffused reflectance and differential absorptance have been averaged over incident solar spectrum, assumed a Planckian here. The result has been to get incident-angle-dependent optical parameters more reliable than mere literature values. The procedure has entailed the computation of grids of complicated definite integrals. They are particularly important during the trajectory optimization of the Aurora solar flyby, a very sensitive profile that would allow the sailcraft to achieve cruise speeds ranging from 12 to 20 AU/yr.  相似文献   

11.
The value of the radial gradient of low-energy (0.5–2 MeV) protons in the heliosphere at distances of 20–80 AU in the periods of solar activity minima in 1985–1987 and 1994–1997 was estimated using the data of the Voyager-1 and Voyager-2 spacecraft (s/c). Preliminary results on the dependence of the radial gradient on the distance were obtained for protons of these energies. The value of the radial gradient varies from –3% (AU)–1 to –1% (AU)–1 at distances from the Sun of 20–60 AU, reaching +0.7% (AU)–1 at maximum considered distances (80 AU). The sign reversal of the proton radial gradient at a distance of 60–70 AU is interpreted as the appearance of a new component: up to the point of inversion there are mainly particles of the solar origin and/or accelerated in the inner heliosphere, while after the reversal of the gradients sign the fluxes of particles prevail whose source is located far from the Sun (maybe in the vicinity of the heliosphere boundary in the region of existence of the termination shock).Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 1, 2005, pp. 3–8.Original Russian Text Copyright © 2005 by Logachev, Zeldovich, Surova.  相似文献   

12.
The paper provides a survey of novel mission concepts for continuous, hemispheric polar observation and direct-link polar telecommunications. It is well known that these services cannot be provided by traditional platforms: geostationary satellites do not cover high-latitude regions, while low- and medium-orbit Sun-synchronous spacecraft only cover a narrow swath of the Earth at each passage. Concepts that are proposed in the literature are described, including the pole-sitter concept (in which a spacecraft is stationary above the pole), spacecraft in artificial equilibrium points in the Sun–Earth system and non-Keplerian polar Molniya orbits. Additionally, novel displaced eight-shaped orbits at Lagrangian points are presented. For many of these concepts, a continuous acceleration is required and propulsion systems include solar electric propulsion, solar sail and a hybridisation of the two. Advantages and drawbacks of each mission concept are assessed, and a comparison in terms of high-latitude coverage and distance, spacecraft mass, payload and lifetime is presented. Finally, the paper will describe a number of potential applications enabled by these concepts, focusing on polar Earth observation and telecommunications.  相似文献   

13.
Fast solar sail rendezvous mission to near Earth asteroids   总被引:1,自引:0,他引:1  
The concept of fast solar sail rendezvous missions to near Earth asteroids is presented by considering the hyperbolic launch excess velocity as a design parameter. After introducing an initial constraint on the hyperbolic excess velocity, a time optimal control framework is derived and solved by using an indirect method. The coplanar circular orbit rendezvous scenario is investigated first to evaluate the variational trend of the transfer time with respect to different hyperbolic excess velocities and solar sail characteristic accelerations. The influence of the asteroid orbital inclination and eccentricity on the transfer time is studied in a parametric way. The optimal direction and magnitude of the hyperbolic excess velocity are identified via numerical simulations. The found results for coplanar circular scenarios are compared in terms of fuel consumption to the corresponding bi-impulsive transfer of the same flight time, but without using a solar sail. The fuel consumption tradeoff between the required hyperbolic excess velocity and the achievable flight time is discussed. The required total launch mass for a particular solar sail is derived in analytical form. A practical mission application is proposed to rendezvous with the asteroid 99942 Apophis by using a solar sail in combination with the provided hyperbolic excess velocity.  相似文献   

14.
Solar sails are a concept of spacecraft propulsion that takes advantage of solar radiation pressure to propel a spacecraft. Although the thrust provided by a solar sail is small it is constant and unlimited. This offers the chance to deal with novel mission concept. In this work we want to discuss the controllability of a spacecraft around a Halo orbit by means of a solar sail. We will describe the natural dynamics for a solar sail around a Halo orbit. By natural dynamics we mean the behaviour of the trajectory of a solar sail when no control on the sail orientation is applied. We will then discuss how a sequence of changes on the sail orientation will affects the sail's trajectory, and we will use this information to derive efficient station keeping strategies. Finally we will check the robustness of these strategies including different sources of errors in our simulations.  相似文献   

15.
针对太阳系边际探测任务,开展了星际多目标飞越的任务规划,采用小推力混合优化设计方法完成了基于借力飞行及电推进技术的行星际转移轨道联合优化设计,对比研究了面向日球层鼻尖和尾部探测的星际多目标探测飞行方案。研究表明,探测器在2024-2025年发射,可飞抵日球层鼻尖区域,在2027-2030年发射可飞抵日球层尾部区域,并可在2049年1月1日前飞离日心100 AU,实现太阳系边际空间的科学探测。其中日球层鼻尖探测任务探测器飞抵100 AU的位置位于鼻尖中心区域,可与旅行者1号、2号探测器形成有效互补。文章所用任务规划方法,可为太阳系边际探测的自主任务规划技术提供基础,相关研究成果能够为未来中国首次太阳系边际探测任务的实施提供有价值的参考。  相似文献   

16.
The efficiency of using the light pressure of solar radiation for increasing the semimajor axis of the orbit of an Earth Satellite carrying a solar sail is estimated. The orbit is nearly circular and has an altitude of about 900 km. The satellite is in the mode of single-axis solar orientation: it rotates at an angular velocity of 1 deg/s around the axis of symmetry, which traces the direction to the Sun. This mode is maintained by the solar sail, which serves in this case as a solar stabilizer. The following method of increasing the semimajor axis of the orbit (which is equivalent to increasing the total energy of the satellite's orbital motion) is considered. On those sections of the orbit, where the angle between the light pressure force acting upon the sail and the vector of geocentric velocity of the satellite does not exceed a specified limit, the sail is functioning as a solar stabilizer. On those sections of the orbit, where the above-indicated angle exceeds this limit, the sail is furled by way of turning the edges of the petals towards the Sun. Such a control increases the semimajor axis by more than 150 km for three months of flight. In this case, the accuracy of solar orientation decreases insignificantly.  相似文献   

17.
A magnetic sail is an advanced propellantless propulsion system that uses the interaction between the solar wind and an artificial magnetic field generated by the spacecraft, to produce a propulsive thrust in interplanetary space. The aim of this paper is to collect the available experimental data, and the simulation results, to develop a simplified mathematical model that describes the propulsive acceleration of a magnetic sail, in an analytical form, for mission analysis purposes. Such a mathematical model is then used for estimating the performance of a magnetic sail-based spacecraft in a two-dimensional, minimum time, deep space mission scenario. In particular, optimal and locally optimal steering laws are derived using an indirect approach. The obtained results are then applied to a mission analysis involving both an optimal Earth–Venus (circle-to-circle) interplanetary transfer, and a locally optimal Solar System escape trajectory. For example, assuming a characteristic acceleration of 1 mm/s2, an optimal Earth–Venus transfer may be completed within about 380 days.  相似文献   

18.
The Neutron, Gamma ray, and X-ray Spectrometer (NGXS) is a compact instrument designed to detect neutrons, gamma-rays, and hard X-rays. The original goal of NGXS was to detect and characterize neutrons, gamma-rays, and X-rays from the Sun as part of the Solar Probe Plus mission in order to provide direct insight into particle acceleration, magnetic reconnection, and cross-field transport processes that take place near the Sun. Based on high-energy neutron detections from prompt solar flares, it is estimated that the NGXS would detect neutrons from 15 to 24 impulsive flares. The NGXS sensitivity to 2.2 MeV gamma rays would enable a detection of ∼50–60 impulsive flares. The NGXS is estimated to measure ∼120 counts/s for a GOES C1-type flare at 0.1 AU, which allows for a large dynamic range to detect both small and large flares.  相似文献   

19.
In the early to mid-2000s, NASA made substantial progress in the development of solar sail propulsion systems. Solar sail propulsion uses the solar radiation pressure exerted by the momentum transfer of reflected photons to generate a net force on a spacecraft. To date, solar sail propulsion systems were designed for large robotic spacecraft. Recently, however, NASA has been investigating the application of solar sails for small satellite propulsion. The NanoSail-D is a subscale solar sail system designed for possible small spacecraft applications. The NanoSail-D mission flew on board the ill-fated Falcon Rocket launched August 2, 2008, and due to the failure of that rocket, never achieved orbit. The NanoSail-D flight spare is ready for flight and a suitable launch arrangement is being actively pursued. This paper will present an introduction solar sail propulsion systems and an overview of the NanoSail-D spacecraft.  相似文献   

20.
The paper deals with the mission analysis and conceptual design of an interplanetary 6U CubeSats system to be implemented in the L1 Earth–Sun Lagrangian Point mission for solar observation and in-situ space weather measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号