首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对发动机调节片用聚酰亚胺树脂及其复合材料性能、调节片力学仿真设计和装机试车考核三方面进行研究。采用DMA、TGA、流变仪和万能力学试验机等考察了KH308树脂及其复合材料性能,并结合ANSYS力学仿真计算等方法对复合材料调节片进行了结构设计。结果表明KH308树脂熔体最低黏度为14.8 Pa·s,具有良好的成型工艺性;T_g为335℃,T5d为468.8℃,MT300/KH308复合材料具有优良的耐热、抗振动及耐老化性能,可以有效替代钛合金调节片,实现减重52%,各项功能指标均满足设计要求。  相似文献   

2.
新型芳炔基硅树脂及其复合材料的制备   总被引:1,自引:0,他引:1  
利用三乙炔基苯基苯(TEPHB)对聚硅乙炔(PSA)进行改性,成功制备了一种新型芳炔基舍硅杂化树脂(PSA-E),并使用该树脂基体制备了玻璃纤维增强复合材料.表征结果指出PSA-E树脂兼具良好的工艺性能与优异的耐高温性能,该树脂的固化过程较为温和且易于控制,其固化物的Td5高于500℃,900℃残重率大于89%(氮气条件下).玻璃纤维增强PSA-E基复合材料的力学性能较PSA基复合材料有较大幅度的提高.  相似文献   

3.
采用胺解法合成了二(3-乙炔基苯胺) -二甲基硅烷(SZ),并与含硅芳炔(PSA)树脂熔融共混制
备了PSA/ SZ。利用一系列测试手段考察了PSA/ SZ 树脂的流变行为、固化反应、热稳定性、弯曲、介电性能以
及石英布增强PSA/ SZ 复合材料的力学性能。结果表明,硅氮烷SZ 的加入有效降低了PSA/ SZ 树脂的黏度,
PSA/ SZ 浇铸体的弯曲强度提高了62. 7%,石英纤维增强PSA/ SZ 复合材料的弯曲和层剪强度分别提高了
18. 7%和60. 4%。
  相似文献   

4.
以含硅芳炔树脂为基体,偶氮二甲酰胺(AC)为发泡剂,脲素为助发泡剂,通过树脂在固化的同时进行发泡,制备出工艺简单、结构基本可控的泡沫材料。研究结果表明,当泡沫材料密度约为0.578 g/cm~3时,泡孔直径约300μm,压缩强度为6.32 MPa,热导率为0.112 W/(m·K),介电常数为1.7左右。  相似文献   

5.
以含硅芳炔树脂为先驱体ꎬ采用先驱体浸渍法(PIP) 制备了C/ C-SiC 复合材料ꎮ 首先通过炭化
T300/ 含硅芳炔树脂(CFRP)制备了多孔C/ C-SiC 预制体ꎬ并探究了炭化工艺对所得多孔C/ C-SiC 预制体性能
的影响ꎬ制得的多孔C/ C-SiC 预制体弯曲强度为98 MPaꎻ然后以含硅芳炔树脂溶液为浸渍剂ꎬ浸渍多孔C/ CSiC
预制体ꎬ经过4 次浸渍、固化、炭化后ꎬ得到致密的C/ C-SiC 复合材料ꎬ其弯曲强度提升到203 MPaꎬ同时用
XRD、SEM、TEM 等手段表征了复合材料的微观结构ꎬ所得C/ C-SiC 复合材料主要成分为β-SiC 及无定型碳ꎮ
  相似文献   

6.
将双酚E型氰酸酯(BEDCy)与含硅芳炔树脂(PSA)用溶液共混的方法制备了共混树脂(BEDCy/PSA);通过DSC和原位红外研究了共混树脂的固化反应,使用TGA和DMA表征了树脂的耐热性能;还考察了共混树脂的介电性能和力学性能.结果表明,PSA树脂能够降低BEDCy树脂的固化温度;随着PSA树脂的添加,氮气和空气氛...  相似文献   

7.
借助绘图软件PRO/E构建出用于研究冲击性能的三层三维浅交弯联机织复合材料及冲头的结构模型,并利用有限元软件ANSYS对其力学性能进行模拟分析。分别表征复合材料中纤维、树脂基体的应力应变分布情况,并预测复合材料的冲击破坏形式。结果表明,在准静态冲击载荷的作用下,复合材料在冲头冲击的位置形成贯穿性损伤;纤维表现出较大的冲击应力,树脂基体表现出较大的冲击应变;冲击破坏模式主要为复合材料的变形引起的贯穿性破坏,包括纤维的断裂、树脂的破碎及纤维与树脂间的脱粘。  相似文献   

8.
文摘为改善苯并噁嗪树脂对树脂传递模塑(RTM)成型工艺的适应性,并进一步提升苯丙噁嗪基复合材料的耐高温性能。提出利用炔基改性苯并噁嗪树脂,以提高树脂的交联密度,并改善树脂流变特性。结果表明:改性后的炔基苯并噁嗪树脂在81. 5℃时黏度低至805 mPa·s可满足RTM工艺灌注要求,在110℃其工艺窗口高达310 min。同时,炔基苯并噁嗪树脂的起始固化温度低至130℃,固化温度为167℃,后处理温度为208℃,满足低温固化要求。通过DMA与TGA分析,RTM成型低温固化苯并噁嗪/碳纤维复合材料的Tg为411℃,在N_2环境下800℃残留率高达88. 6%,表明其复合材料具有良好的耐高温性能。SEM观察发现该树脂与纤维界面粘结强度较高,碳纤维复合材料350℃拉伸性能保留率达99%以上,弯曲、层剪性能保留率达70%以上,压缩性能保留率也达60. 9%。  相似文献   

9.
以1,4-二(4’-乙炔苯氧基)苯与甲基苯基二氯硅烷为原料,通过格氏反应合成具有二苯醚结构的含甲基苯基硅芳醚芳炔(PSEA-P2)树脂,进而制备其碳纤维增强复合材料。通过核磁共振(1H-NMR)、红外光谱(FT-IR)、差热分析(DSC)、热重分析(TGA)、动态热机械分析(DMA)等分析手段对树脂及其复合材料的结构与性能进行表征。结果表明:PSEA-P2树脂加工窗口为110~175℃,适合复合材料模压成型;树脂浇铸体具有优良的力学强度和耐热性能,在室温~450℃未出现玻璃化转变,弯曲强度可达54.3MPa,氮气下热分解温度Td5达到531℃;T300碳纤维增强复合材料室温下弯曲强度可达518.0MPa,400℃下弯曲强度保留率为53%。  相似文献   

10.
改性聚芳基乙炔树脂性能研究   总被引:10,自引:0,他引:10       下载免费PDF全文
通过添加改性剂得到了改性聚芳基乙炔树脂,对树脂和树脂固化物分别进行了差热扫描热分析(DSC)和热重分析(TG)。通过对复合材料的纤维单丝界面剪切强度和层间剪切强度测试,研究了树脂与碳纤维的界面结合性能,并对编织织物增强的改性聚芳基乙炔树脂基体复合材料进行了烧蚀试验。结果表明,改性聚芳基乙炔树脂固化放热减小,而基本不影响其树脂传递模塑(RTM)工艺性和耐高温性能,明显改善了与碳纤维的界面性能,复合材料的界面剪切强度提高了40%-50%,层间剪切强度提高了将近一倍;烧蚀性能与未改性树脂基本相当。  相似文献   

11.
根据烧蚀防热复合材料RTM制备技术对树脂的要求,研究了一种适合于RTM工艺的无溶剂高残碳烧蚀树脂及其法向增强复合材料,详细讨论了树脂的黏度-温度特性、耐热性能、烧蚀性能及烧蚀复合材料的力学性能、热物理性能,并对制备的烧蚀防热材料构件进行了固体发动机热试车考核。结果表明:采用多环芳香酚改性的高邻位酚醛树脂工艺适用期长达120min、残碳率达67. 1%,使用该树脂制备的几种法向增强的复合材料层剪强度达39. 3MPa以上;该类树脂基烧蚀防热材料可作为固体火箭发动机扩张段的标准材料。  相似文献   

12.
在双马来酰亚胺/二元胺/改性剂A预聚体系中加入环氧丙烯酸树脂,制备了一种可用作耐热复合材料基体的改性双马来酰亚胺树脂。用DSC研究了该树脂基体的反应特性,并制定出了合适的固化工艺参数:改性树脂基体经140℃/1 h 160℃/1 h 180℃/2 h初固化,于220℃/8 h后固化处理,其热变形温度(HDT)为245℃;该树脂与玻璃纤维制备的单向复合材料层压板的室温拉伸强度、弯曲强度和层间剪切强度分别为1 030 MPa、1 600 MPa和92.1 MPa;180℃下测得弯曲强度保持率为67.8%,层间剪切强度保持率为63.2%,用DMA法测得T_g为273℃。  相似文献   

13.
将4-苯乙炔苯酐(4-PEPA)和3,3',4,4'-二苯醚四酸二酐(ODPA),与3,4'-二氨基二苯醚(3,4'-ODA)和1,4-双(4'-氨基-2'-三氟甲基苯氧基)苯(BTPB)或1,3-双(4-氨基苯氧基)苯(1,3,4-APB)混合物通过高温缩合聚合反应合成了两种苯乙炔苯酐封端的聚酰亚胺低聚物PI-1和PI-2,对其熔体黏度、热行为及固化物的热性能等进行了研究.实验表明,PI-1和PI-2低聚物在280℃时具有低的熔体黏度(<1 Pa·s)和良好的熔体黏度稳定性;经371℃固化后形成的纯树脂固化物具有优异的耐热性能,5%热失重温度超过520℃,Tg超过330℃,有望成为适用于RTM工艺的复合材料基体树脂.  相似文献   

14.
为了满足不同马赫数飞行器对透波材料提出的集透波、承载、防热、耐蚀、抗冲击于一体的性能
要求ꎬ本文开展了不同耐热区间纤维增强陶瓷基复合材料的研究ꎮ 采用PIP 工艺分别制备了氧化铝、莫来石、
石英、氮化硅纤维增强SiBN 陶瓷基复合材料ꎬ并对其介电和力学性能进行了测试与评价ꎮ 结果发现莫来石纤
维增强SiBN 陶瓷基复合材料的介电常数和介电损耗分别为4.1~4.2 和1.0×10-2 ~9.7×10-3ꎬ抗弯、拉伸、压缩
强度分别为95.12、34.95 和80.92 MPaꎬ具有最佳的综合性能ꎮ
  相似文献   

15.
通过预聚反应制备了一种新型聚苯并噁嗪改性树脂.利用FTIR、GPC表征了改性树脂.利用旋转黏度计、DSC、DMA和TGA分别考察了树脂的流动性能、固化行为和改性树脂固化物的热性能.结果表明:制备的苯并噁嗪改性树脂在60~ 100℃,黏度小于500 mPa·s,恒温6h黏度不明显增大,具有良好的流动性能,适用于RTM成型工艺.改性树脂聚合温度较低,具有良好的固化工艺性.改性树脂固化物在氮气气氛下Td5在430℃以上,在900℃的残重高达73.71%,Ts为353.4℃,具有良好热性能.  相似文献   

16.
对一种新型RTM用双马来酰亚胺树脂R801的固化反应特性、成型工艺及其制备的复合材料性能进行了研究,DSC曲线表明该树脂体系的固化温度为170~220℃;黏度随温度变化曲线表明在70~120℃,树脂黏度增长缓慢,具有不少于7 h的适用期;在90℃左右时,其初始黏度<100 mPa.s,工艺操作窗口时间≥10 h;该树脂制备的MT300碳纤维复合材料在300℃时的压缩、弯曲、层剪性能保持率均≥63%。  相似文献   

17.
研究了EP / PI 和BMI/ PES 两种TS/ TP 共混体系的反应诱导相分离过程及形貌结构ꎮ 采用相差
显微镜原位研究了反应诱导相分离的过程ꎬ发现分相初期形成了均匀的相结构ꎻ随着相分离的发展ꎬ一定浓度
区域样品中的双连续结构经过演化发展ꎬ分相后期样品内部与边缘的形貌不一致ꎮ 通过对固化后样品断面的
SEM 观察ꎬ发现在TP 浓度很低时形成海岛结构ꎬ当TP 浓度稍高ꎬ样品形成了核壳结构ꎬ在样品边缘和与基板
接触的上下等外侧形成了TS 的富集区ꎬ只有极少量的TP 分散颗粒存在ꎻ在样品的中间ꎬTS 和TP 形成双连续
结构ꎬ其中TP 富集相具有细丝状的网络特征ꎮ 分析认为ꎬEP 和BMI 为热固性树脂ꎬ初始样品为小分子ꎬ在反
应开始时表现为流体ꎬ为快组分ꎻPI 和PES 为典型的热塑性聚合物ꎬ它们的黏弹性特征随着相分离的发展越来
越显著ꎬ即Tg以下为玻璃态ꎬTg以上表现出弹性、黏弹性特征ꎬ为慢组分ꎮ 在反应分相过程中ꎬ由于TP 富集相
缠结网络的松弛慢于相分离的速度ꎬ因此TP 富集相网络的整体收缩不可避免ꎬ在TP 与TS 动力学极不对称的
作用之下ꎬ初始均匀的双连续结构最终发展为核壳结构ꎮ
  相似文献   

18.
采用双酚A型氰酸酯改性双马树脂,研制了一种新型无溶剂耐高温双马树脂基体,研究了树脂体系的黏度特性和固化反应动力学,进行了改性树脂体系的力学性能与耐热性研究,实现了1700CF/双马树脂基复合材料的湿法缠绕成型工艺.结果表明,改性双马树脂的拉伸强度为75.6 MPa,断裂伸长率为2.4%,弯曲强度为111 MPa,玻璃化转变温度为227.9℃.该改性双马树脂体系的黏度适中、适用期长且适于湿法缠绕,T700CF/双马树脂基复合材料的纵向拉伸强度为1668 MPa,纵向弯曲强度为1590 MPa,层间剪切强度为73.3MPa.  相似文献   

19.
田文平  肖军  李金焕  徐挺  刘婷 《航空学报》2016,37(11):3520-3527
以空间光学结构应用为背景,对新研制改性氰酸酯树脂低温固化体系开展评价研究,包括树脂体系的固化特性、力学性能、耐湿热性以及工艺性能等;与HS40高模量碳纤维复合制备了复合材料,对其主要力学性能进行了研究。结果表明,改性氰酸酯树脂催化体系具有优异的固化反应特性,起始固化温度为101.2℃,较未催化的氰酸酯树脂降低了97.4℃;拉伸性能以及弯曲性能均有提高,同时其沸水饱和吸水率仅1.3%左右,明显低于双马(4%)和环氧树脂(5.8%);树脂的工艺性良好,适合热熔法制备预浸料;应用热熔浸渍法制备的HS40碳纤维/氰酸酯树脂预浸料经层合固化后力学性能优异:纵向拉伸强度和模量分别为2 244.5 MPa和248.0 GPa。  相似文献   

20.
通过POSS 催化剂改性氰酸酯树脂,并采用热熔法排布制备了碳纤维/ 中温固化氰酸酯预浸料, 验证了改性氰酸酯的工艺性。同时考察了氰酸酯树脂及其复合材料的性能。结果表明, POSS 催化剂的加入, 降低了氰酸酯的固化温度,同时其使用温度、室温及-18℃的储存性能和复合材料力学性能与改性前相当。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号