首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
对发动机调节片用聚酰亚胺树脂及其复合材料性能、调节片力学仿真设计和装机试车考核三方面进行研究。采用DMA、TGA、流变仪和万能力学试验机等考察了KH308树脂及其复合材料性能,并结合ANSYS力学仿真计算等方法对复合材料调节片进行了结构设计。结果表明KH308树脂熔体最低黏度为14.8 Pa·s,具有良好的成型工艺性;T_g为335℃,T5d为468.8℃,MT300/KH308复合材料具有优良的耐热、抗振动及耐老化性能,可以有效替代钛合金调节片,实现减重52%,各项功能指标均满足设计要求。  相似文献   

2.
使用三维绘图软件Pro/E 5.0构建出一种三层角联锁机织复合材料的细观结构模型,借助有限元软件ANSYS对复合材料在剪切力作用下纤维与树脂的应力、应变分布进行数值模拟,并借此分析该复合材料在剪切作用下的力学行为,并预测复合材料破坏模式。结果表明:复合材料在剪切力作用下发生沿剪切力方向程度较均匀的剪切变形;纤维相对于树脂承受更多剪切力作用,产生更大应力,但发生相对较小的应变;纤维中轴向与剪切力方向平行的经纱相对轴向垂直于剪切力的纬纱表现出更大的应力和应变。  相似文献   

3.
借助Pro/Engineer绘图软件,建立三维浅交弯联机织复合材料及弯曲压头的结构模型,进行弯曲性能研究。借助ANSYS Workbench有限元软件,探究复合材料在5 mm弯曲位移载荷作用下纤维、树脂和复合材料的应力、应变分布,并对复合材料的破坏模式进行预测。结果表明:三维浅交弯联机织复合材料在弯曲载荷的作用下,试样与上、下压头接触处最容易发生弯曲破坏;三维浅交弯联机织复合材料在承载弯曲载荷时,增强体纤维起到主要承载作用,树脂基体起次要承载作用;在5 mm的弯曲载荷作用下,复合材料的破坏模式主要是树脂的破碎。  相似文献   

4.
利用有限元软件Workbench,建立了三维中空夹芯复合材料结构模型,进行拉伸性能研究。利用该模型,探讨了材料在1 mm拉伸位移载荷作用下纤维、树脂和复合材料的应力、应变分布。结果表明:三维中空夹芯复合材料在拉伸载荷作用下,"X"形芯材交叉处应力最大,最容易发生拉伸破坏;上下面板应力最小,最不容易发生拉伸破坏;复合材料在承受拉伸载荷作用时,增强体纤维起主要承载作用,基体树脂起次要作用;当拉伸位移载荷达到1 mm时,材料的破坏模式主要为树脂破裂。  相似文献   

5.
通过胺解反应合成了二(3-乙炔基苯胺)-甲基乙烯基硅烷(SZMV),并对其物理结构进行了表征。将SZMV与含硅芳炔(PSA)树脂通过熔融共混的方法制备了改性PSA树脂(PSA/SZMV)。考察了改性PSA树脂的黏度、固化特性、耐热性能、介电性能以及复合材料的力学性能。研究结果表明SZMV的加入有效降低了树脂的黏度,使其加工工艺性能得到改善,氮气条件下树脂固化物的T5d高达571℃,仍保持良好的耐热性能,改性树脂的介电常数为2.9,复合材料的弯曲和层剪强度分别提高了45%和33.6%。  相似文献   

6.
以含硅芳炔树脂为基体,偶氮二甲酰胺(AC)为发泡剂,脲素为助发泡剂,通过树脂在固化的同时进行发泡,制备出工艺简单、结构基本可控的泡沫材料。研究结果表明,当泡沫材料密度约为0.578 g/cm~3时,泡孔直径约300μm,压缩强度为6.32 MPa,热导率为0.112 W/(m·K),介电常数为1.7左右。  相似文献   

7.
为了满足不同马赫数飞行器对透波材料提出的集透波、承载、防热、耐蚀、抗冲击于一体的性能
要求ꎬ本文开展了不同耐热区间纤维增强陶瓷基复合材料的研究ꎮ 采用PIP 工艺分别制备了氧化铝、莫来石、
石英、氮化硅纤维增强SiBN 陶瓷基复合材料ꎬ并对其介电和力学性能进行了测试与评价ꎮ 结果发现莫来石纤
维增强SiBN 陶瓷基复合材料的介电常数和介电损耗分别为4.1~4.2 和1.0×10-2 ~9.7×10-3ꎬ抗弯、拉伸、压缩
强度分别为95.12、34.95 和80.92 MPaꎬ具有最佳的综合性能ꎮ
  相似文献   

8.
2.5维机织复合材料纬向拉伸过程初始屈服准则   总被引:1,自引:0,他引:1  
2.5维机织复合材料已有较为广泛的应用,而目前对该类复合材料的破坏机理和失效原因尚未形成统一的认识。根据三维机织复合材料的拉伸试验现象,基于经纱曲面层板纬向纤维和树脂应力相等的假设,建立了2.5维机织结构复合材料纬向拉伸过程的初始屈服条件和屈服准则。通过对2.5维机织复合材料3种结构12个试件进行纬向拉伸试验及文献中的三维机织复合材料拉伸试验,与计算预测结果的对比表明本文中建立的初始屈服准则的合理性。研究表明,树脂横向裂纹是2.5维结构复合材料纬向拉伸过程初始屈服产生的直接原因;2.5维机织复合材料出现纬向拉伸屈服的条件仅和经纱曲面板内的经纱体积含量、纤维和基体的弹性模量及基体的拉伸破坏强度等因素有关,而与经纱曲面板的走向和层数无关。因为组分弹性模量不同,在纬向拉伸过程中,树脂应变高于复合材料的应变。树脂的初始横向裂纹首先发生在纤维密集处,并向富树脂区扩展;裂纹在向纤维方向扩展过程中受到纤维的阻碍而受到限制。  相似文献   

9.
研究了EP / PI 和BMI/ PES 两种TS/ TP 共混体系的反应诱导相分离过程及形貌结构ꎮ 采用相差
显微镜原位研究了反应诱导相分离的过程ꎬ发现分相初期形成了均匀的相结构ꎻ随着相分离的发展ꎬ一定浓度
区域样品中的双连续结构经过演化发展ꎬ分相后期样品内部与边缘的形貌不一致ꎮ 通过对固化后样品断面的
SEM 观察ꎬ发现在TP 浓度很低时形成海岛结构ꎬ当TP 浓度稍高ꎬ样品形成了核壳结构ꎬ在样品边缘和与基板
接触的上下等外侧形成了TS 的富集区ꎬ只有极少量的TP 分散颗粒存在ꎻ在样品的中间ꎬTS 和TP 形成双连续
结构ꎬ其中TP 富集相具有细丝状的网络特征ꎮ 分析认为ꎬEP 和BMI 为热固性树脂ꎬ初始样品为小分子ꎬ在反
应开始时表现为流体ꎬ为快组分ꎻPI 和PES 为典型的热塑性聚合物ꎬ它们的黏弹性特征随着相分离的发展越来
越显著ꎬ即Tg以下为玻璃态ꎬTg以上表现出弹性、黏弹性特征ꎬ为慢组分ꎮ 在反应分相过程中ꎬ由于TP 富集相
缠结网络的松弛慢于相分离的速度ꎬ因此TP 富集相网络的整体收缩不可避免ꎬ在TP 与TS 动力学极不对称的
作用之下ꎬ初始均匀的双连续结构最终发展为核壳结构ꎮ
  相似文献   

10.
以含硅芳炔树脂为先驱体ꎬ采用先驱体浸渍法(PIP) 制备了C/ C-SiC 复合材料ꎮ 首先通过炭化
T300/ 含硅芳炔树脂(CFRP)制备了多孔C/ C-SiC 预制体ꎬ并探究了炭化工艺对所得多孔C/ C-SiC 预制体性能
的影响ꎬ制得的多孔C/ C-SiC 预制体弯曲强度为98 MPaꎻ然后以含硅芳炔树脂溶液为浸渍剂ꎬ浸渍多孔C/ CSiC
预制体ꎬ经过4 次浸渍、固化、炭化后ꎬ得到致密的C/ C-SiC 复合材料ꎬ其弯曲强度提升到203 MPaꎬ同时用
XRD、SEM、TEM 等手段表征了复合材料的微观结构ꎬ所得C/ C-SiC 复合材料主要成分为β-SiC 及无定型碳ꎮ
  相似文献   

11.
使用Pro/E 5.0构建出一种三维角联锁机织复合材料细观结构模型,利用ANSYS分析侧压载荷下复合材料中纤维与树脂应力应变分布情况,预测复合材料在侧压载荷下的力学行为,并对比复合材料侧压性能。结果表明:复合材料侧压性能表现出各向异性,纬向侧压性能好于经向;复合材料中纤维承载更多的载荷作用,树脂发生更大的变形;轴向平行于侧压方向的纤维承受更大的载荷作用,轴向垂直于侧压方向的纤维承受较小的载荷作用。  相似文献   

12.
应用ANSYS有限元商用软件,建立单向玻璃纤维增强树脂基体复合材料轴对称平面Whitney和Riley分析模型,利用非线性有限元分析方法,研究该类复合材料纤维长径比变化对材料整体力学行为的影响,同时研究该类复合材料中纤维与基体界面结合强度分布形式对材料破坏方式的影响。研究表明:纤维在基体中的埋深长度与基体对纤维包裹厚度应保持在一个最佳范围,高过一定值后增强作用几乎不再增加,过低又不能保证复合材料足够力学性能;随着纤维与基体上端界面结合强度增加,纤维界面上端正应力绝对值出现最大值,并且纤维界面上下端正应力转化为压应力,因此材料的断裂位置为上端加持部位附近,下端加持部位附近没有出现界面脱粘现象;随着纤维与基体下端界面结合强度的增加,纤维界面下端正应力绝对值出现最大值,并且纤维界面上下端正应力转化为分离力,因此材料断裂位置为材料下端加持部位附近,上端加持部位附近出现纤维与基体脱粘现象。  相似文献   

13.
利用电子万能实验机及分离式Hopkinson拉杆对玻璃纤维增强复合材料S4C9-1200/SY14的两种不同铺层角度层合板([0]16和[±45]4S)进行了应变率为10-3~103s-1下的单轴拉伸力学性能测试。从应力应变曲线和试样破坏断口分析了材料的应变率效应、纤维损伤和界面脱粘损伤。实验结果表明:[0]16层板破坏时表现出典型的不规则脆性破坏,纤维的损伤具有初始门槛值,而纤维的强化存在应变率门槛效应。[±45]4S层板主要破坏方式是纤维与基体的脱粘,损伤发展近似线性。应变率高于强化门槛时,[±45]4S层板表现出极强的应变率依赖性,极限强度能提高10%~50%。  相似文献   

14.
聚铝碳硅烷(PACS)纤维预氧化过程是制备近化学计量比Si C(Al)纤维的关键步骤。而连续PACS纤维预氧化的氧含量控制是关键问题。采用实时测量设备对连续PACS纤维预氧化过程进行跟踪,用分段积分方法对PACS纤维进行非等温动力学模拟;利用实时测量数据用非线性优化方法求解,可以预测PACS纤维预氧化增重。本文在实验过程中,采用聚碳硅烷(PCS)纤维和PACS纤维进行对比研究。结果表明:在相同的预氧化条件下,两种纤维均在Si—H键反应程度为40%时出现凝胶点,反应后凝胶含量均达到100%,其氧含量分别为9.9wt%和14.7wt%;PACS纤维的Si—H键反应程度和增重均比PCS纤维低。利用实时增重数据,用Matlab的Lsqnonlin函数进行求解预氧化动力学方程,得到PACS的预氧化活化能为62.2 k J/mol,模型可准确的预测其预氧化过程中的增重率变化。  相似文献   

15.
马健  燕瑛  杨雷  刘玉佳  冉治国 《航空学报》2012,33(5):871-878
 为了揭示轴向压缩载荷与径向冲击载荷共同作用下复合材料壳体开孔处裂纹的产生机理,开展了含圆孔复合材料圆柱壳冲击试验,并对冲击试验进行了有限元仿真分析。提出复杂冲击载荷作用下的动态响应分析方法,运用LS-DYNA对冲击载荷作用下含圆孔复合材料圆柱壳动态响应过程进行了模拟,采用含刚度退化的Chang-Chang失效准则预测复合材料圆柱壳破坏过程,得到的冲击加速度响应曲线及破坏区域与试验结果一致,验证了本文方法的正确性。对有限元模型进行动力学及静力学破坏分析,结果表明,径向冲击引起的环向拉应力是圆孔边缘破坏区域90°铺层纤维断裂与基体开裂的主要原因,而拉应力只引起0°铺层基体开裂。由破坏起始分析可知,将复合材料圆柱壳90°铺层含量由20%提高至50%,可使结构承载能力增加56%。  相似文献   

16.
先进复合材料具有高比强度、高比模量等优点,是航空发动机应用研究的热点。本文通过弹道冲击试验研究三维机织复合材料平板在高速物体冲击下的损伤失效机制及其力学行为,采用高速相机记录下了靶板受冲击损伤变化过程,分析了不同速度对三维机织复合材料平板损伤形貌的影响。试验结果表明,三维机织复合材料具有优异的抗裂纹萌生和扩展性,冲击表面的主要破坏模式是纤维剪切破坏和基体破碎,在出口表面主要破坏模式是纤维拉伸断裂和基体开裂。本研究可用于支撑验证碳纤维增强树脂基复合材料包容性,为航空发动机复合材料机匣研制提供基础。  相似文献   

17.
通过单向拉伸试验,对比研究平纹编织C/SiC陶瓷基复合材料在室温和高温(1300℃,包括惰性气氛和湿氧气氛)环境下的宏观力学特性,并采用光学显微镜和扫描电镜对试件断口进行显微观察,分析其损伤模式和破坏机理。结果表明:C/SiC复合材料的室温和高温拉伸行为通常表现为非线性特征,在低应力时就开始出现损伤;纤维与基体之间界面滑行阻力的降低使C/SiC复合材料在高温惰性气氛环境下的拉伸强度和破坏应变均比室温下的高;碳纤维的氧化严重影响材料的承载能力导致高温湿氧环境下的拉伸强度和破坏应变均比室温下的低;C/SiC复合材料室温和高温下的拉伸均呈现韧性断裂,断口较为相似,只是纤维拔出长度和断口的平齐程度有所不同,其中高温惰性气氛环境下纤维拔出最长,高温湿氧环境下试件断口有明显的被氧化痕迹;0°纤维束表面基体开裂、明显的层间分层以及0°纤维和纤维束的拔出和断裂同时携带90°纤维束拔出是C/SiC复合材料在室温和高温下的拉伸破坏机理。  相似文献   

18.
薄层复合材料的抗平头冲击特性研究   总被引:1,自引:0,他引:1  
采用圆柱平头型冲头(直径为25mm)在一定的冲击速度范围内冲击薄层复合材料(厚度:1.50~2.50mm),利用加速度传感器分析复合材料冲击背面的应力动态变化情况,研究了影响复合材料抗平头冲击能力的因素和复合材料的冲击损伤过程。结果表明:影响复合材料抗平头冲击能力的主要因素是纤维织物本身特性、纤维含量和界面强度;冲击能量阀值决定复合材料冲击损伤模式和能量吸收过程;增加复合材料的刚性,提高复合材料的冲击变形范围可充分发挥吸能垫的作用。  相似文献   

19.
文摘为了分析复合材料热胀系数的影响因素,对复合材料热胀系数设计起到指导意义,通过理论分析方法对纤维树脂体系、铺层顺序、铺层角度偏差、纤维体积分数等复合材料热胀系数影响因素做了相应研究。结论表明:同种基体不同纤维,其热胀性能表现出较大的差异;不同基体对同一种纤维热胀系数有较大的影响;0°铺层在管的外层会有助于降低轴向热胀系数,同时也会对径向热胀系数的增大有一定贡献;铺层角在30°~60°时,由于角度偏差带来的热胀系数偏差较大。复合材料管件的轴向热胀系数与纤维体积分数之间呈现出高度的非线性与非单调性,径向的热胀系数呈现出单调的降低现象。  相似文献   

20.
采用细观力学方法来模拟纤维增强陶瓷基复合材料层合板在准静态加载下应力-应变行为.采用层合板修正剪滞模型分析复合材料出现损伤时的细观应力场,通过临界基体应变能准则、Nair脱粘准则确定基体裂纹间隔和界面脱粘长度.最后结合剪滞模型和损伤机制模拟陶瓷基复合材料层合板应力-应变曲线,并与试验数据进行比较,结果吻合较好.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号