首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
采用固态置换反应原位合成工艺,利用Al—Ti—TiO2-Ho2O3体系的放热反应合成了HoAl-Al2O3/TiAl复合材料。利用XRD和SEM分析了Ho2O3掺:枭对原位合成HoAl,Al2O3颗粒强化钛铝基复合材料显微组织的影响,探讨了稀土氧化物(Ho2O3)的细化机制。测试了力学性能。结果表明:Al—Ti—TiO2-Ho2O3系原位合成的HoAl-Al2O3/TiAl复合材料由TiAl,Ti3Al,Al2O3以及HoAl相组成;HoAl金属间化合物弥散分布于基体晶粒和Al2O3颗粒交界处,限制颗粒长大,细化基体晶粒与Al2O3,颗粒,同时提高了HoAl,Al2O3颗粒在基体中的分散度;Ho2O3的引入改善了复合材料的力学性能。  相似文献   

2.
利用Ti-Al-TiO2-Fe2O3体系的放热反应,原位热压合成了Fe掺杂的Al2O3/TiAl复合材料。借助XRD和SEM研究了复合材料的物相组成和显微结构以及Fe2O3引入量对复合材料结构和力学性能的影响。结果表明:产物主要由γ-TiAl,α2-Ti3Al,Al2O3相构成,Al2O3颗粒分布于基体交界处,存在一定的团聚;随Fe2O3的掺杂量增大,Al2O3颗粒呈细小弥散分布,同时基体晶粒尺寸也减小,较好地改善了材料的力学性能,复合材料的相对密度和洛氏硬度逐渐增大。Fe2O3掺杂量为0.84%(质量分数)时,复合材料弯曲强度和断裂韧度达到最大值,分别为624MPa和6.63 MPa·m1/2。  相似文献   

3.
采用碳热还原氮化SiO2的方法在1 500℃制备了Si2N2O,并通过XRD和热失重分析,研究了Fe2O3对合成Si2N2O的催化作用及机理。Fe2O3对Si2N2O的合成具有显著的催化作用,加入少量Fe2O3可以使SiO2的转化率达到100%。Fe2O3的催化机理为:一方面,Fe2O3被C还原为纳米铁单质,并与Si形成Fe-Si液相,该Fe-Si液相可溶解SiO2和C颗粒,促使SiOC中间相在较低温度下形成,从而显著降低碳热还原反应的开始温度。另一方面,Fe-Si液相中的CO2与FeSi反应,通过形成SiO和CO而加速碳热还原反应的进行。  相似文献   

4.
原位合成Al2O3/Ti-Al复合材料的研究   总被引:5,自引:0,他引:5       下载免费PDF全文
利用氧对金属Ti、Al粉的部分氧化,原位合成了Al2O3/Ti-Al复合材料,通过XRD和SEM手段,发现Al2O3分布在Ti—Al基体交界处,在一些制得的复合材料中出现了大量原位生成的纤维。借助差热分析,对该制备过程的反应机理进行了初步探讨,研究认为该制备过程的反应步骤为:Ti、Al金属粉表面氧化→铝的熔化→TiAl,的生成→Ti2Al、TiAl、Ti,Al等多种化合物生成和Al对TiO2的还原反应。原始组成中铝含量决定了复合材料的主要晶相组成,铝含量不足时,生成Ti2Al、TiAl、Ti3Al等多种金属间化合物和氧化铝;铝含量足够时,最终的产物为TiAl3、金属铝以及氧化铝等相。  相似文献   

5.
聚苯胺/NiFe2 O4纳米晶体复合体系的电磁性能研究   总被引:4,自引:0,他引:4       下载免费PDF全文
分别使用原位掺杂的方法和溶胶-凝胶自燃烧的方法制备了聚苯胺微管以及纳米NiFe2O4晶体;并对聚苯胺微管以及聚苯胺/NiFe2O4和石蜡的复相粉体在8~12GHz频率范围进行了复介电常数和磁导率的测量。结果表明,聚苯胺微管在测试频率范围内为介电损耗材料,当纳米NiFe2O4晶体加入到聚苯胺和石蜡的混合体系时,聚苯胺/NiFe2O4和石蜡的复相粉体混合体系在测试频率范围内同时具有一定的介电损耗和磁损耗,并且其混合体系的微波吸收性能高于单独加入聚苯胺时的微波吸收性能。  相似文献   

6.
利用Al-Ti-TiO2体系原位反应合成了Nb掺杂Al2O3/TiAl复合材料。借助XRD和SEM研究了Nb掺杂Al2O3/TiAl的显微结构以及Nb引入量对复合材料显微结构的影响。结果表明,复合材料由TiAl、Ti3Al、Al2O3、Nb和NbAl3相构成,细小Al2O3颗粒分布于基体晶粒交界处,存在一定的团聚;Nb元素引入量的高低,可调节产物中TiAl和Ti3Al的相对含量,随Nb含量的增大,TiAl含量逐渐减少,Ti3Al则逐渐增大;同时,基体晶粒和Al2O3颗粒均有所细化,且分布逐渐均匀,材料的均匀性得到改善。  相似文献   

7.
纳米Fe2O3的制备及其对AP热分解的催化作用   总被引:2,自引:3,他引:2       下载免费PDF全文
采用溶胶-凝胶法、水热法及强迫水解法,制备了球形、立方形、纺缍形及针形四种不同形貌的纳米Fe2O3粒子.通过透射电子显微镜(TEM)、X衍射(XRD)、比表面积(BET)对纳米粒子的粒径、形貌、结构、比表面积进行了表征,用差示扫描量热仪(DSC)研究了Fe2O3对高氯酸铵(AP)热分解的催化性能.结果表明纳米Fe2O3对AP的高温热分解催化作用较微米的效果好.不同形貌的纳米Fe2O3粒子有着各自不同的比表面积,比表面积较大的纳米纺缍形和针形Fe2O3较比表面积较小的纳米立方形和球形的催化效果好.比表面积最大的纳米针形Fe2O3使AP的高温热分解峰温度降低了67.3℃,表观分解放热提高了785J·g-1,表现出较好的催化性能.  相似文献   

8.
考察了纳米SiO2基复合隔热材料各组分添加量对吸水率的影响,同时针对复合材料吸水率高的问题,通过热处理和添加疏水纳米SiO2的方式来降低吸水率.结果表明:纳米Al2O3和无碱超细玻璃纤维对复合材料吸水率影响不大,添加锆英石会使材料吸水率升高.高温热处理会在一定程度上降低吸水率,但温度应控制在800℃以下.添加疏水纳米S...  相似文献   

9.
以几种不同的2.5D衍生结构织物为增强体,制备了法向增强、经向增强及经法向增强2.5D Si O2f/Si O2复合材料,比较了上述材料与现有2.5D Si O2f/Si O2复合材料的经向力学性能,并研究了经法向增强2.5D结构复合材料中增强纱比例、纤维体积分数与材料性能之间的关系,对织物结构进行了优化。结果表明,经法向增强2.5D Si O2f/Si O2复合材料的经向力学性能较现有2.5D复合材料有显著提高,该材料在较低密度下(1.6 g/cm3),经向拉伸强度与现有材料(1.65 g/cm3)持平,且经向压缩强度接近现有材料的4.3倍。  相似文献   

10.
纳米铁酸铜的制备及对RDX热分解的催化作用   总被引:9,自引:0,他引:9       下载免费PDF全文
以CuCl2·2H2O和Fe(NO3)3·9H2O为原料,采用室温固相化学反应法制备出三种不同铜、铁摩尔质量比的纳米CuFe2O4粉体,产物的粒径约为5nm。采用差示扫描量热法(DSC)测试了纳米CuFe2O4对RDX热分解的催化作用。结果表明:纳米CuFe2O4对RDX热分解有明显的催化效果。在三种纳米CuFe2O4中,铜、铁摩尔质量比为1∶1的纳米CuFe2O4的催化效果最好,它使RDX的分解峰温前移了17 8℃,放热量增加了250J/g,活化能降低了21 9kJ/mol。纳米CuFe2O4的用量增加对RDX热分解的催化效果显著增大。  相似文献   

11.
采用SHS/PHIP工艺制轩出了致密的TiC-Al2O3-xFe金属陶瓷。研究子延迟时间、高压持续时间及压力等工艺参数对合成TiC-Al2O3-20Fe金属陶瓷密度的影响,并分析了Fe含量对TiC-Al2O3-xFe金属陶瓷材料性能的影响。  相似文献   

12.
以Al粉、Sm_2O_3为颜料,环氧改性有机硅为黏合剂,采用喷涂法制备了环氧改性有机硅/Al-Sm_2O_3复合涂层。研究了不同耐热温度及耐热时间对涂层外观、微结构、近红外反射率、红外发射率及力学性能的影响。结果表明:所制备涂层在300℃下热处理5 h后,其外观、微结构保持不变;发射率和1.06μm近红外反射率可分别低至0.607和64.7%;涂层的硬度、附着力和耐冲击强度等力学性能可分别保持在4 H、1级和50 kg·cm;所制备涂层在250℃下热处理100 h后,其外观、微结构仍然保持不变;发射率和1.06μm近红外反射率可分别低至0.624和67.1%;涂层的硬度、附着力和耐冲击强度等力学性能可分别保持在4 H、1级和50 kg·cm。  相似文献   

13.
采用多弧离子镀制备了具有不同色彩的Cr/Cr2O3薄膜,利用紫外-可见光分光光度计研究了薄膜在可见和红外波段的光谱特性,利用SEM进行薄膜表面结构和形貌的分析,利用四探针测阻仪测试了样品的方块电阻,利用红外发射率测量仪测试了样品的红外发射率。结果表明:Cr/Cr2O3薄膜具有丰富的色彩,在可见光区有明显的反射峰,可见光区光谱特性主要受膜厚的影响,方块电阻随膜厚增加而有变大,样品的红外发射率主要取决于金属层,平均红外发射率最小降至0.371。  相似文献   

14.
采用溶胶-凝胶自蔓延法制备 La3+掺杂 Ni0.35 Co0.15 Zn0.5 Fe2 O4,并研究不同掺杂量对样品微观结构、电磁参数及微波吸收性能的影响。通过 X 射线衍射仪、扫描电镜研究了样品的相结构和微观形貌,使用振动样品磁强计与矢量网络分析仪分别对样品的静态磁性能及在1~12GHz 的电磁参数进行了研究,并计算了不同厚度(3 mm、5 mm、8 mm)下材料的反射损耗。研究表明,适量掺杂 La3+能够提高 Ni0.35 Co0.15 Zn0.5 Fe2 O4铁氧体的吸波性能,并使吸收频带向高频移动。其中样品 Ni0.35 Co0.15 Zn0.5 La0.04 Fe2 O4与石蜡混合厚度为5mm 时,最小反射损耗为-28.4dB,小于-10dB 带宽为3.7GHz。  相似文献   

15.
Al_2O_3/TiAl 复合材料的原位合成、结构与性能研究(英文)   总被引:1,自引:0,他引:1  
以 Ti, Al, TiO2和 Nb2O5混合粉为原料,采用热压反应合成技术制备了 Al2O3/TiAl 复合材料。对复合材料的微观组织与力学性能进行了研究。结果表明:产物由γ-TiAl, α2-Ti3Al, Al2O3和 NbAl3相组成。原位反应形成的细小 Al2O3粒子主要分布在基体晶界处。随着 Nb2O5含量的增加,晶粒明显细化,Al2O3粒子呈弥散分布在基体中。最终形成了由γ和γ α2构成的特殊组织。随着 Nb2O5含量的增大,复合材料的硬度逐渐增大,抗弯强度和断裂韧性在 Nb2O5含量为 6 wt%时达到最大,分别为 398.5 MPa 和 6.99 MPa·m1/2。  相似文献   

16.
采用AgCuTi活性钎料,在880℃/10min规范下成功实现了SiO2f/SiO2自身、SiO2f/SiO2与Cu和SiO2f/SiO2与1Cr18Ni9Ti三种接头的连接。实验结果表明,三种接头中靠近SiO2f/SiO2母材的界面处均形成了一层薄薄的扩散反应层组织,反应层中出现了Ti和O的富集,根据两者的原子比例推断生成了TiO2相;另外,三种接头中心区都形成了由灰色相和白色相共同组成的Ag-Cu共晶组织,其中灰色相为Cu基固溶体,白色相为Ag基固溶体。接头剪切强度结果显示,SiO2f/SiO2/Cu接头剪切强度为12.4MPa,SiO2f/SiO2/1Cr18Ni9Ti接头剪切强度为18.4MPa,接头中的残余应力是决定接头强度大小的重要因素之一。  相似文献   

17.
The electronic structures of the titanium dioxide(TiO2) doped with V and Fe were analyzed by using first-principle calculations based on the density functional theory(DFT) with the full potential linearized augmented plane wave method (FP-LAPW). The fully optimized structure and the relaxation introduced by impurity were obtained by minimizing the total energy and atomic forces. The unit cell of the V-doped anatase TiO2 is smaller than that of the non-doped one, but for the Fe-doped one, the case is just the opposite. It is found that the apical Ti-O and impurity-O bond lengths of the V/Fe-doped anatase TiO2 are greater than those of the non-doped structure, but smaller for the equatorial bond length. Through the band structures and the density of states, the V-doped TiO2 is shown to be a kind of half-metal, while the Fe-doped TiO2 a kind of metal. The magnetic moments of the V/Fe-doped system are mainly generated by the dopants. The results may be helpful for us to understand the experimental outcome of this system.  相似文献   

18.
选用氧化物TiO<,2>、Cr<,2>O<,3>、B<,2>O<,3>、SiO<,2>和氟化物CaF<,2>为活性剂,研究了它们对激光-TIG电弧复合焊接不锈钢的影响.结果表明,Cr<,2>O<,3>和B<,2>O<,3>使焊缝更对称,而TiO<,2>、SiO<,2>和CaF<,2>则可消除焊缝的喇叭口收边,Cr<,2...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号