首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
针对考虑参考星机动的编队飞行相对位置控制问题,给出了一种基于终端滑模的有限时间控制方法. 基于编队卫星相对运动动力学模型,设计了有限时间终端滑模控制器,同时证明了该控制器作用下系统状态误差可在有限时间内收敛. 以编队构型重构和考虑参考星机动时的构型保持控制为例,利用本文控制方法进行了仿真分析. 仿真结果表明,基于终端滑模的有限时间控制方法相比于传统的线性滑模控制方法,在保证编队飞行控制高精度的同时,有效提升了误差的收敛速度,验证了该方法的有效性和优越性.  相似文献   

2.
皮纳卫星应用与特点分析   总被引:2,自引:0,他引:2  
皮纳卫星是指质量为千克级、以微机电系统(MEMS)技术为基础的小卫星。其中纳卫星一般指质量在10kg以下的小卫星,皮卫星一般是指1kg以下的小卫星。皮纳卫星具有成本低、研制周期短、发射灵活等突出优点,能通过组成星座、编队或卫星群完成单颗大卫星难以实现的任务,在研发和应用上具备一定的优势:如飞行机会更多,从而促进科学技术的更快转化和应用;任务种类多样,从而可产生更多的潜在用户;技术门槛相对较低,能促进更多高校和小企业参与,从而促进航天领域的技术创新和发展。  相似文献   

3.
针对卫星编队飞行相对位置控制问题,提出了一种有限时间控制方法.首先,建立了编队卫星相对运动的非线性动力学方程.其次,设计了有限时间快速收敛的滑模面,提出了一种有限时间控制方法,该方法能保证闭环控制系统的全局稳定性和快速收敛性,并给出了理论证明.最后,将提出的方法应用于卫星编队飞行维持控制.仿真结果表明该方法在收敛时间和控制精度方面均优于传统线性滑模控制和终端滑模控制.  相似文献   

4.
卫星编队飞行动力学仿真及其应用   总被引:7,自引:2,他引:5  
由若干颗小卫星编队飞行组成一个虚拟卫星,其功能相当或超过一颗大卫星,这将开拓小卫星一个完全崭新的应用领域。文章首先研究轨道动力学,系统地研究编队飞行三种动力学模型,其次进行定位卫星和区域导航系统两个实例数学仿真,分析研究各种数学模型的精度和它们的应用场合。  相似文献   

5.
    
近距离协同工作的微推力器卫星编队能更好地完成高精度空天卫星编队任务。但摄动等干扰因素会导致编队卫星间保持特定的几何构型和相对运动关系发生不确定性变化,因此有必要设计一种编队构型和信息拓扑结构以实现卫星编队的长期高精度保持。同时微推力器的作用环境要求卫星编队系统更高的可靠性和快速性。为此,基于Cartwheel构型对微推力卫星编队系统进行了研究,设计了一种能够满足系统性能要求的拓扑网络结构,并据此对卫星编队构型进行修正。提出了基于粒子群优化(PSO)算法的在线轨迹优化算法,并将其应用于卫星编队保持控制系统之中,实现了高精度、低能耗的快速稳定控制。  相似文献   

6.
采用视线测量的方法,建立一种编队卫星队形保持与机动的协同控制策略。编队中每一个卫星跟踪自己轨道前方邻近卫星,产生一个视线测量矢量,编队的第一个卫星根据高级控制层指令追踪期望轨道,产生链式编队,将编队卫星之间的视线距离作为反馈控制量来实现队形控制。通过推导J2相对摄动力的表达式,控制模型考虑了模型不确定性和摄动影响,采用滑模控制器,实现了基于视线测量的编队卫星链式跟踪协同控制。仿真算例结果表明,该方法在实现编队卫星队形保持与整体机动控制上具有可行性。  相似文献   

7.
卫星编队飞行技术的进展及建议   总被引:3,自引:0,他引:3  
闻新  张伟 《国际太空》2005,(1):9-14
20世纪90年代,基于卫星技术的编队飞行(也称编队飞行卫星群、伴随卫星群和虚拟卫星等)概念受到重视。美国航宇局(NASA)把编队飞行及其相关技术视为下一代可用的关键技术,相继开展了地球观测-1(Earth Observing-1,已于2000年11月21日成功发射,  相似文献   

8.
研究地球同步轨道处径向两星库仑编队队形保持的自适应控制问题.建立了双星库仑编队在地球同步轨道处径向两星库仑编队动力学模型.基于建立的非线性化动力学模型,同时考虑到外部扰动和动力学模型误差等因素,设计径向两星库仑编队在地球同步轨道处的构型保持自适应控制律,并利用Lyapnuov稳定性理论证明系统的闭环稳定性.最后进行数值仿真,并与传统PID控制进行了比较.仿真结果表明提出的自适应控制律响应速度快,稳定性好,编队构型能够收敛到期望值,控制性能明显优于PID控制.  相似文献   

9.
绳系卫星部署阶段的动力学分析   总被引:1,自引:1,他引:0  
绳系卫星系统部署阶段末时刻状态决定着其编队飞行的初始状态,为了研究不同因素对绳系卫星系统部署阶段运动的影响,本文建立了一种简单的平面哑铃模型,将系绳视作有阻尼的弹簧,两个卫星视作刚体,考虑重力梯度力矩。通过仿真,发现系绳释放的速度和副星推力是影响绳系卫星系统部署阶段稳定性的主要因素。  相似文献   

10.
针对三星编队飞行问题,提出一种绳系控制方法,在自旋刚体卫星的平衡分析的基础上,建立了Thomson和Likins Pringle平衡构形的绳系三星编队模型,通过对编队系统的稳定性分析得到了两种构形下的稳定条件,并给出了三种控制策略用以解决Likins-Pringle构形不能满足平衡条件的问题。最后经过仿真验证了理论分析的正确性,并对三种控制策略进行了检验,结果表明Thomson构形无须辅助手段,在满足特定条件下可以稳定运行,Likins-Pringle构形采用弹簧系统和喷气辅助绳系控制时满足特定条件也可以稳定运行。  相似文献   

11.
  总被引:2,自引:2,他引:2  
电磁航天器编队飞行是指利用若干个航天器之间的电磁力进行相对运动控制的新型编队飞行.分析了两颗电磁航天器编队飞行的相对运动的基本原理,基于能量消耗均衡性的考虑,给出了根据控制力求解其控制磁矩的解析解.基于极坐标建立了电磁航天器非线性相对运动动力学模型,从外界不确定干扰力和电磁计算模型的远场近似两个角度,分析了该动力学模型的参数不确定性.针对编队构型保持问题以及参数不确定性,设计了近地圆轨道上两颗电磁航天器编队构型保持的自适应控制律并进行了数值仿真分析.仿真结果表明:相对运动模型和自适应控制律是有效的,编队构型能够收敛到期望值,同时对不确定参数进行了准确的估计,说明利用星间电磁作用进行航天器编队构型保持是可行的.  相似文献   

12.
Spacecraft relative motion with inter-craft electromagnetic force has distinct advantages, and its invariant shapes that are convenient for formation keeping ensure some potential significant applications. However, the electromagnetic actuators affect both the relative trajectory and attitude motion, complicating related researches on issues of invariant shape design and formation control. In this paper, the formation keeping problem for an invariant three-craft triangular electromagnetic formation is investigated on the basis of a 6-DOF full nonlinear dynamic model. Moreover, a combined control scheme consisting of feed-forward and feed-back control components is proposed to handle the high nonlinearity, strong coupling, model uncertainties and external disturbances. The feed-forward component is obtained through desired invariant shape design which is complicated by the coupling and superposition effects of any two distinct magnetic dipoles, and the feed-back component is developed with a combination of linear feed-back controller by the LQR method and active disturbance rejection by the extended state observer. Finally, the numerical simulation is presented to verify the feasibility and validity of the proposed 6-DOF combined control scheme.  相似文献   

13.
This study presents model predictive formation control based on an eccentricity/inclination vector separation strategy. Alternative collision avoidance can be accomplished by using eccentricity/inclination vectors and adding a simple goal function term for optimization process. Real-time control is also achievable with model predictive controller based on convex formulation. Constraint-tightening approach is address as well improve robustness of the controller, and simulation results are presented to verify performance enhancement for the proposed approach.  相似文献   

14.
This work develops a tension control strategy for deploying an underactuated spin-stable tethered satellite formation in the hub-spoke configuration. First, the Lagrange equation is used to model the spin-deployment dynamics of the tethered satellite formation. The central spacecraft is modeled as a rigid body, and the tethered subsatellites are simplified as lumped masses. Second, a pure tension controller has been proposed to suppress the tether libration motion in the deployment without thrusting at the subsatellites. A nonlinear sliding mode control is introduced in the tension controller for the underactuated system to suppress the periodic gravitational perturbations caused by the spinning hub-spoke tethered satellite formation. The unknown upper bounds of the perturbations are estimated by adaptive control law. The bounded stability of the closed-loop tension controller has been proved by the Lyapunov theory. Finally, numerical simulations validate the effectiveness and robustness of the proposed controller, i.e., tethers are fully deployed stably to the desired hub-spoke configuration.  相似文献   

15.
This study presents a semi-analytic approach for optimal tracking and formation keeping with high precision. For a continuous-thrust propulsion system, optimal formation keeping problems near a general Keplerian orbit are formulated with respect to a reference trajectory which is an explicit function of time. A nonlinear optimal tracking control law is then derived in generic form as a function of the states by employing generating functions in the theory of Hamiltonian systems. The applicability of the overall process is not affected by the complexity of dynamics and the selection of coordinates. As it allows us to design a nonlinear optimal feedback controller in the Earth-centered inertial frame, a variety of nonlinear perturbations can be incorporated easily without complicated coordinate transformations. Numerical experiments demonstrate that the nonlinear tracking control logic achieves superior tracking accuracy and cost reduction by accommodating higher-order nonlinearities.  相似文献   

16.
电推进卫星角动量卸载研究   总被引:1,自引:0,他引:1  
电推进卫星需要在进行位置保持的同时通过将推力器的指向略微偏离质心来产生控制力矩,完成角动量卸载。针对该问题,文章在给定推力器开机位置、时长和动量轮目标卸载量的情况下,提出了正常模式和故障模式下的角动量卸载算法。通过对推力模型的简化,得出了推力器最优偏转方向的解析解,并对考虑推力器弧段损失和不考虑弧段损失的角动量卸载算法进行了比较。仿真结果表明,所提出的卸载算法能够在进行位置保持的同时完成角动量卸载,为电推进卫星的在轨控制策略提供了有效解决方案。  相似文献   

17.
Development and experiment of an integrated orbit and attitude hardware-in-the-loop (HIL) simulator for autonomous satellite formation flying are presented. The integrated simulator system consists of an orbit HIL simulator for orbit determination and control, and an attitude HIL simulator for attitude determination and control. The integrated simulator involves four processes (orbit determination, orbit control, attitude determination, and attitude control), which interact with each other in the same way as actual flight processes do. Orbit determination is conducted by a relative navigation algorithm using double-difference GPS measurements based on the extended Kalman filter (EKF). Orbit control is performed by a state-dependent Riccati equation (SDRE) technique that is utilized as a nonlinear controller for the formation control problem. Attitude is determined from an attitude heading reference system (AHRS) sensor, and a proportional-derivative (PD) feedback controller is used to control the attitude HIL simulator using three momentum wheel assemblies. Integrated orbit and attitude simulations are performed for a formation reconfiguration scenario. By performing the four processes adequately, the desired formation reconfiguration from a baseline of 500–1000 m was achieved with meter-level position error and millimeter-level relative position navigation. This HIL simulation demonstrates the performance of the integrated HIL simulator and the feasibility of the applied algorithms in a real-time environment. Furthermore, the integrated HIL simulator system developed in the current study can be used as a ground-based testing environment to reproduce possible actual satellite formation operations.  相似文献   

18.
空间技术的快速发展使得利用空间卫星的编队飞行构建大型空间星座成为可能,在引力波探测、射电望远镜编队、星座组网等任务方面具有重要作用。超精度控制是实现卫星高精度编队飞行的关键技术。推进系统是实现卫星编队长期高度稳定飞行的保证,从而实现内部科学装置的正确运行。不同于常规的推进系统,卫星精密编队超精度控制对推进系统的推力可调范围、分辨率、响应时间、推力的一致性等有着极高的要求。根据卫星精密编队任务需求,对微牛级推进系统的功能及技术要求进行了分析,提出了基于M2微波离子推力器的卫星超精度控制推进系统。阐述了M2超精密微牛级推进系统的关键技术和研究进展,为后续M2推力器在无拖曳控制方面的应用奠定了基础。  相似文献   

19.
In this study, a two-step control methodology is developed for energy-optimal reconfiguration of satellites in formation in the presence of uncertainties or external disturbances. First, based on a linear deterministic system model, an optimal control law is analytically determined such that a satellite maneuvers from an initial state to a final state relative to another satellite. The structure of this optimal solution is predetermined and simply given by a linear combination of the fundamental matrix solutions associated with the original equations of relative motion. Only the coefficients are to be determined to satisfy given initial and final conditions. In the second step, an uncertain nonlinear formation system is considered and a robust adaptive controller is designed to compensate for the effects of uncertainties or disturbances that the formation system may encounter. Although the control strategy is inspired by sliding mode control, it produces smooth control signals, thereby avoiding chattering. Also, an adaptation law is added such that the uncertainty or disturbance effects are effectively and quickly eliminated without a priori information about them. The combination of these two controllers guarantees that the satellite accurately tracks the optimal path in the unknown environment. Numerical simulations demonstrate the effectiveness and accuracy of the proposed two-step control methodology, in which a satellite formation is optimally reconfigured under unknown environmental disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号