首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
大口径柔性索网天线在地面环境下重力变形较大,且变形与天线反射面的制造误差始终交织在一起从而影响天线型面精度调试。针对这一问题,文章给出了反射面各类误差的定义,提出了制造误差与天线口面向上和口面向下不同放置状态型面误差的相互关系并予以证明;通过对这些关系式的运用降低了反射面重力变形与反射面制造误差的耦合程度,为反射器在重力环境下的型面调试指明了方向;此外结合工程需求给出了索网天线型面调试的流程,在实际工作中利用该流程可以有效地减少天线翻转调整次数,提高索网天线的型面调整效率。  相似文献   

2.
针对具有大尺度抛物柱状反射面需求的空间可展开天线,提出一种基于四棱柱折展模块的构架式可展开抛物柱面网状天线,依靠模块驱动组件实现天线联动展开。把抛物面天线工作表面的拟合方法拓展到抛物柱面天线,采用工作面拟合圆均等网格划分径向投影获取天线支撑桁架设计的关键节点。柔性网状反射面采用双层索网结构形式,提出与前索具有较好对称性的背索网悬链线设计,前、后索网节点由支撑立柱间拟合圆弧均等分径向分别投影到抛物线段和悬链线圆弧上获取,根据前后索网节点建立索网拓扑构型,基于非线性有限元法对索网预张力进行设计迭代,获得抛物线维索网预张力与其均值的最大误差率为12.3%及柱面维索网预张力与其均值的最大误差率为7.6%的优化结果。研制了机械口径12 m×12 m样机,多次展开获得2 mm RMS以内的形面精度,验证了构架式可展开抛物柱面网状天线较优的展开性能和形面精度保持性能。  相似文献   

3.
提出一种考虑桁架柔性变形对索网平衡态影响的非对称偏馈环形网状天线索网预张力设计方法。该方法将天线整体结构分为内部索网与外部桁架两部分,通过内部索网预张力与外部桁架变形间的不断迭代,寻找满足索网形状及张力要求的天线平衡态,以实现网状天线索网预张力优化配置的目的。相比于常规基于刚性桁架假设的预张力设计,该方法可充分计及环形桁架与柔性索网协调变形,获得高精度反射面,且该方法适用于非对称偏馈天线,可有效避免后期张力调试,节约人力物力。算例分析验证了在进行预张力设计时计及桁架柔性的必要性及方法的正确性和有效性。  相似文献   

4.
大口径高形面精度的空间可展开天线是未来航天器天线的重要发展方向之一。提出了一种新型形面可调节的单层索网空间可展开天线。通过对单层索网进行静力平衡分析,给出了单层索网天线的内力计算方法,并基于能量法,建立了单层索网天线的形状预测理论模型,实现了单层索网天线的三步法找形方法。基于理论分析结果,建立了50m口径的单层索网天线的有限元模型,通过有限元模型对建立的单层索网理论设计分析方法进行了验证,并验证了单层索网天线的形面精度及在轨调整的可行性。理论分析和有限元分析结果表明,单层索网天线拓扑构型简单,可通过改变天线中心轴的长度,实现天线形面的在轨调节。在100℃的均匀温差下,通过在轨形面调节,50m口径单层索网天线的形面误差可降低至5mm以下。  相似文献   

5.
网状天线服役于高低温、强辐射的复杂太空环境,其热变形是影响天线在轨性能的重要因素。目前的设计方法均为常温下的索段预应力配置,难以计及服役环境对天线在轨性能的影响。通过在索网模型中引入温度载荷,建立了以常温下索段参数为变量,以服役环境下的索网形面精度和张力分布为目标及约束条件的索网优化模型,从而在设计之初充分考虑服役热环境下的天线性能,改善天线在轨精度和张力分布。分析了天线运行轨道热环境,计算了天线在不同轨道位置的温度场;基于非线性有限元理论,建立了网状天线热结构模型,形成了考虑温度效应的索网找形及优化设计方法;开展了面向天线服役性能的索网优化设计。优化结果表明,该方法有效提高了天线在轨运行时的性能,可为考虑服役环境的网状天线优化设计提供方法和思路。  相似文献   

6.
星载环形网状天线的质量小、型面几何精度好、结构刚度高,代表了现有大型可展开天线的先进水平。随着天线工作频率的不断提高,对型面精度提出了越来越高的要求。文章首先介绍了基于高精度环形天线组成和结构系统力学设计思想,讨论了实现高精度设计的基本原理。然后详细分析了高热稳定双层张力网对称设计方法和基于椭圆展开桁架的高精度设计方法,对称布局优化了网面系统的张力分布和系统刚度,能够提高网面抵抗热变形的能力。椭圆展开桁架保证了所有节点都在硬点上,能够提高系统的结构稳定性。椭圆结构有斜切和竖切两种方式,斜切方式实现了任意的角度旋转,所以能够选出较优的节点组合。  相似文献   

7.
为了对单模块桁架索网天线展开动力学进行建模,首先,基于力密度法提出一种考虑桁架弹性变形的索网找形方法:渐近迭代力密度法;其次,基于绝对节点坐标法建立桁架刚柔耦合模型,采用等几何分析方法建立索网非线性有限元模型,进而根据第一类拉格朗日方程建立天线刚柔耦合系统动力学方程,并采用广义–α方法对动力学方程进行高效数值积分;最后,对桁架索网天线展开过程的动力学特性进行了研究和分析。研究结果表明:索网找形方案满足天线反射面形面精度要求,得到均匀的索段张力分布;展开过程中桁架竖杆应力最大,在展开末段,驱动滑块对桁架产生较大冲击。  相似文献   

8.
为在提高可展开网状天线型面精度的同时减少型面调整的工作量,提出了一种基于多神经网络的型面调整方法。通过分析新型张拉网状天线型面与调整索相关性与耦合机制,首次提出了型面调整策略。以10 m口径的新型张拉网状天线为例进行了数值仿真研究,调整后型面的均方根值从5.4×10-3m降低到1.1×10-3m,从而验证了方法的有效性。  相似文献   

9.
  总被引:1,自引:0,他引:1  
相控阵天线阵面的制造、安装产生结构误差,结构误差会导致天线电性能的下降,严重制约高性能相控阵天线的发展.因此,将阵面存在的结构误差作为附加的相位因子引入到天线方向图函数中,建立了平面六边形相控阵天线阵面结构误差与天线电性能之间的结构-电磁耦合模型,并分析了平面度和阵元安装精度与天线电性能的直接影响关系,给出了满足天线电性能要求时的阵面结构误差临界值,为工程设计人员制定天线加工公差提供参考.  相似文献   

10.
星载抛物面天线在轨运行时由于姿态调整或环境因素变化,可能产生振动,从而降低其工作性能。为了减弱振动的影响,需采取加装张紧绳索的方法来提升天线刚度。提出了一种新型张紧绳索多层设计方法,通过将抛物面天线划分为多层,调整各层绳索的张紧力,从而提高天线结构刚度,同时尽量降低张紧力引起的形面误差。为了验证所提方法的有效性,建立了天线的有限元模型。在此基础上进行了有限元分析,研究了不同张紧力参数配置下的结构刚度和形面误差,并以提升结构刚度的同时降低张紧力引起的形面误差为目标,对张紧力参数进行了优化设计。为了提高计算效率,采用响应面法建立代理模型参与优化迭代计算。采用非劣排序遗传算法(NSGA-Ⅱ)完成优化迭代计算,优化后的张紧力参数使天线的性能得到了进一步的提升,为构架式可展开抛物面天线的设计提供理论指导。   相似文献   

11.
绳驱动三自由度机器人可以实现空间的自由转动.由于绳索只可拉伸不可压缩的单向特性,研究驱动绳索张力对机器人的控制具有重要意义.运用几何和矩阵的方法可以分析绳索的张力分配情况;在存在张力约束的条件下,提出张力系数作为评价张力分配优劣状况的指标,通过计算可以得到张力系数分布图,从而对机器人工作空间有直观的认识,进而提出有效的张力优化算法;通过对最小预紧力影响因素及选取方法的讨论,可以得到动态最小预紧力实时计算公式,保证绳索时刻处于张紧状态;通过样机的力检测系统张力反馈的实验可以验证理论推导.通过对以上几部分的分析和研究,可以对四绳驱动三自由度机器人的张力问题有综合全面的认识.   相似文献   

12.
为解决索网天线在轨运行过程中的振动抑制问题,提出一种基于重复自抗扰复合控制器的主动振动控制方法。首先,使用有限元法建立天线型面的振动动力学模型,基于模态截断的方法对动力学模型进行降阶并转化为状态空间方程的形式。然后,基于能量最小化准则,使用遗传算法对传感器/作动器的位置进行优化。最后,设计了基于线性自抗扰控制的天线型面振动主动抑制算法,并在此基础上设计前馈重复控制算法,通过对反馈控制周期性误差的学习,提高控制器抑制周期性扰动的能力。仿真结果表明,相比无控状态时,所提出的控制方法可将型面扰动降低97.0%,振动抑制效果优于PID控制器。所设计的控制方法为天线型面的振动控制提供了一种新的技术手段。  相似文献   

13.
为识别二维二次太阳翼关键环节和预示其在轨展开故障模式,开展不同位置绳索断裂失效对太阳翼展开的影响程度分析。采用考虑绳索断裂的绳索联动轮力学模型,建立了适应于不同联动轮半径的联动轮受力模型,提出角度触发约束消除方法,解决了太阳翼第2次展开过程连续仿真问题,建立了太阳翼第2次展开动力学方程,分析了不同位置绳索断裂失效对太阳翼各板展开角度、展开构型和其他绳索张力的影响。分析表明,越靠近星体的绳索联动机构失效对太阳翼展开过程的影响越大,其中连接架上绳索联动机构失效可直接导致二维二次太阳翼在轨展开失败。  相似文献   

14.
充气天线制作及测试方法研究   总被引:1,自引:0,他引:1  
分析设计了一个充气可展开天线, 得到初始曲面和裁剪片样式. 制作了高精度的裁 剪、拼接模板, 并用于研制3.2 m口径天线样机. 通过加工的天线调节装置, 将反射器与支撑结构组装在一起. 对索张力的两种调节方法进行了比较分析, 最终采用 张力弹簧调节装置. 利用照相测量系统对反射面进行反复调节, 使天线达到了较高的形面精度.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号