首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The spectra of neutrons >10 MeV and gamma-rays 1.5–100 MeV under the Earth Radiation Belts, restored from the data, obtained onboard orbital complex “SALUTE-7”-“KOSMOS-1686”, are presented. The spectra shapes are similar to those for albedo neutrons and gamma-rays, but absolute values of their fluxes (0.2 cm−2 s−1 for neutrons, 0.8 cm−2 s−1 for gamma-rays at the equator and 1.2 cm−2 s−1, 1.9 cm−2 s−1, accordingly, at L=1.9) are several times as large. It is possibly explained by the fact that most of the detected particles were produced by the cosmic ray interactions with the orbital complex matter. Neutron and gamma-ray fluxes obtained from “CORONAS-I” data are near those for albedo particles.  相似文献   

2.
The GAMMA-400 currently developing space-based gamma-ray telescope is designed to measure the gamma-ray fluxes in the energy range from ~20?MeV to several TeV in the highly elliptic orbit (without shadowing the telescope by the Earth) continuously for a long time. The physical characteristics of the GAMMA-400 gamma-ray telescope, especially the angular and energy resolutions (at 100-GeV gamma rays they are ~0.01° and ~1%, respectively), allow us to consider this space-based experiment as the next step in the development of extraterrestrial high-energy gamma-ray astronomy. In this paper, a method to improve the reconstruction accuracy of incident angle for low-energy gamma rays in the GAMMA-400 space-based gamma-ray telescope is presented. The special analysis of topology of pair-conversion events in thin layers of converter was performed. Applying the energy dependence of multiple Coulomb scattering for pair components, it is possible to estimate the energies for each particle, and to use these energies as weight in the angle reconstruction procedure. To identify the unique track in each projection the imaginary curvature method is applied. It allows us to obtain significantly better angular resolution in comparison with other methods applied in current space-based experiments. When using this method for 50-MeV gamma rays the GAMMA-400 gamma-ray telescope angular resolution is about 4°.  相似文献   

3.
During the last few years quite some progress has been achieved in the field of low and medium energy gamma-ray astronomy below about 30 MeV. Gamma rays from the galactic center and anti-center region have been detected, which require a high interstellar electron flux in the 100 MeV range, if they are predominantly diffuse in nature. Though the Crab pulsar and its nebula are still the only galactic gamma-ray sources which definitely have been detected, some recently determined upper limits to the gamma-ray fluxes of other radio pulsars are close to the theoretically expected values. Active galaxies seem to have a maximum of luminosity in the range between several 100 keV and a few MeV and, therefore, are of special interest. First observational results have been reported on the Seyfert galaxies NGC 4151 and MCG 8-11-11, and the radio galaxy CenA. The nature of the diffuse cosmic gamma-ray component at low gamma-ray energies is not yet solved. Unresolved active galaxies are good candidates for its origin.Considering the present status of gamma ray astronomy the study of galactic sources like radio pulsars and the unidentified high energy gamma-ray sources, the Milky Way as a whole, active galaxies and the diffuse cosmic sky seem to be the prime targets for broad band observations below 30 MeV in the GRO area. An unexplored field like that of low energy gamma-ray astronomy, however, is always open for surprises.  相似文献   

4.
Calculations of neutron and gamma-ray production in solar flares are reviewed and compared with neutron and gamma-ray data from the 21 June 1980 and 3 June 1982 flares, as well as gamma-ray data from other flares. The implied charged-particle numbers and spectra are compared with interplanetary observations.  相似文献   

5.
The remnant G347.3-0.5 exhibits strong shell emission in the radio and X-ray bands, and has a purported detection in the TeV gamma-ray band by the CANGAROO-II telescope. The CANGAROO results were touted as evidence for the production of cosmic ray ions, a claim that has proven controversial due to constraining fluxes associated with a proximate unidentified EGRET source 3EG J1714-3857. HESS has now seen this source in the TeV band. The complex environment of the remnant renders modeling of its broadband spectrum sensitive to assumptions concerning the nature and parameters of the circumremnant medium. This paper explores a sampling of reasonable possibilities for multiwavelength spectral predictions from this source, using a non-linear model of diffusive particle acceleration at the shocked shell. The magnetic field strength, shell size and degree of particle cross-field diffusion act as variables to which the radio to X-ray to gamma-ray signal is sensitive. The modeling of the extant data constrains these variables, and the potential impact of the recent HESS detection on such parameters is addressed. Putative pion decay signals in hard gamma-rays resulting from hadronic interactions in dense molecular clouds are briefly discussed; the requisite suppression of the GeV component needed to accommodate the 3EG J1714-3857 EGRET data provides potential bounds on the diffusive distance from the shell to the proximate clouds.  相似文献   

6.
Experiments on SMM, GAMMA, Yohkoh, GRANAT, Compton GRO, INTEGRAL, RHESSI and CORONAS-F satellites over the past three decades have provided copious data for fundamental research relating to particle acceleration, transport and energetics of flares and to the ambient abundance of the solar corona, chromosphere and photosphere. We summarize main results of solar gamma-astronomy (including some results of several joint Russian–Chinese projects) and try to appraise critically a real contribution of those results into modern understanding of solar flares, particle acceleration at the Sun and some properties of the solar atmosphere. Recent findings based on the RHESSI, INTEGRAL and CORONAS-F measurements (source locations, spectrum peculiarities, 3He abundance etc.) are especially discussed. Some unusual features of extreme solar events (e.g., 28 October 2003 and 20 January 2005) have been found in gamma-ray production and generation of relativistic particles (solar cosmic rays, or SCR). A number of different plausible assumptions are considered concerning the details of underlying physical processes during large flares: (1) existence of a steeper distribution of surrounding medium density as compared to a standard astrophysical model (HSRA) for the solar atmosphere; (2) enhanced content of the 3He isotope; (3) formation of magnetic trap with specific properties; (4) prevailing non-uniform (e.g., fan-like) velocity (angular) distributions of secondary neutrons, etc. It is emphasized that real progress in this field may be achieved only by combination of gamma-ray data in different energy ranges with multi-wave and energetic particle observations during the same event. We especially note several promising lines for the further studies: (1) resonant acceleration of the 3He ions in the corona; (2) timing of the flare evolution by gamma-ray fluxes in energy range above 90 MeV; (3) separation of gamma-ray fluxes from different sources at/near the Sun (e.g., different acceleration sources/episodes during the same flare, contribution of energetic particles accelerated by the CME-driven shocks etc.); (4) asymmetric magnetic geometry and new magnetic topology models of the near-limb flares; (5) modeling of self-consistent time scenario of the event.  相似文献   

7.
After more than six and half years in orbit, the ESA space observatory INTEGRAL has provided new, exciting results in the soft gamma-ray energy range (from a few keV to a few MeV). With the discovery of about 700 hard X-Ray sources, it has changed our previous view of a sky composed of peculiar and “monster” sources. The new high energy sky is in fact full of a large variety of normal, very energetic emitters, characterized by new accretion and acceleration processes (see also IBIS cat4 (Bird et al., 2010). At the same time, about one GRB/month is detected and imaged by the two main gamma-ray instruments on board: IBIS and SPI. In this paper, we review the major achievements of the INTEGRAL observatory in the field of Gamma-Ray Bursts. We summarize the global properties of Gamma-Ray Bursts detected by INTEGRAL, with respect to their duration, spectral index, and peak flux distributions. We recall INTEGRAL results on the spectral lag analysis, showing how long-lag GRBs appear to form a separate population at low peak fluxes. We review the outcome of polarisation studies performed by using INTEGRAL data. Finally, concerning single GRB studies, we highlight the properties of particularly interesting Gamma-Ray Bursts in the INTEGRAL sample.  相似文献   

8.
COMPTEL is the first imaging telescope to explore the MeV gamma-ray range (0.7 to 30 MeV). At present, it is performing a complete sky survey. In later phases of the mission selected celestial objects will be studied in more detail. The data from the first year of the mission have demonstrated that COMPTEL performs very well. First sky maps of the inner part of the Galaxy clearly identify the plane as a bright MeV-source (probably due to discrete sources as well as diffuse radiation). The Crab and Vela pulsar lightcurves have been measured with unprecedented accuracy. The quasars 3C273 and 3C279 have been seen for the first time at MeV energies. Both quasars show a break in their energy spectra in the COMPTEL energy range. The 1.8 MeV line from radioactive 26A1 has been detected from the central region of the Galaxy and a first sky map of the inner part of the Galaxy has been obtained in the light of this line. Upper limits to gamma-ray line emission at 847 keV and 1.238 MeV from SN 1991T have been derived. Upper limits to the interstellar gamma-ray emissivity have been determined at MeV-energies. Several cosmic gamma-ray bursts within the field-of-view have been located with an accuracy of about 1°. On 1991 June 9, 11 and 15, COMPTEL observed gamma-ray emission (continuum and line) from three solar flares. Also neutrons were detected from the June 9 and June 15 flares.  相似文献   

9.
The amount of data on gamma-ray bursts (GRBs) and the detected afterglows observed by the Swift satellite contributed significantly to the understanding of the phenomenon. The behavior of the early afterglow rises some interesting questions. With the early afterglow localizations of gamma-ray burst positions made by Swift, the clear delimitation of the prompt phase and the afterglow is not so obvious any more. There are hints of a canonical X-ray afterglow lightcurve with segments of different slopes. Not all bursts necessarily show all the segments. It is important to see if the prompt phase and the afterglow has the same origin or they stem from different parts of the progenitor system. We will combine the of gamma-ray burst data from BAT and XRT and compare the extrapolated gamma-ray flux to the X-ray in a sample of bursts and find that there is a good agreement between the two measurements. This indicates that the physical process shaping burst and the early afterglow are the same.  相似文献   

10.
The radial distribution of the high-energy (70 MeV-5 GeV) gamma-ray emissivity in the outer Milky Way is derived. The kinematics of HI are used to construct column-density maps in three galacto-centric distance ranges in the outer Galaxy. These maps are used in combination with COS-B gamma-ray data to determine gamma-ray emissivities in these distance ranges. A steep negative gradient of the emissivity for the 70 MeV-150 MeV energy range is found in the outer Galaxy. The emissivity for the 300 MeV-5 GeV range is found to be approximately constant (within 20%) and equal to the local value out to large (20 kpc) galacto-centric distances. These results imply a hardening of the gamma-ray spectrum with increrasing distance and for R > 16 kpc the spectrum is shown to be consistent with a π°-decay spectrum with the intensity expected from the local measurement of the cosmic-ray nuclei spectrum. The energy-dependent decrease is interpreted as a steep gradient in the cosmic-ray electron density and a near constancy of the nuclear component. The galactic origin of electrons with energies up to several hundreds of MeV is confirmed, while for cosmic-ray nuclei with energies of a few GeV either confinement in a large galactic halo or an extragalactic origin is suggested by the data.  相似文献   

11.
HEAO-1 observed hard radiations (X- and gamma-rays) from a major solar flare on 11 July 1978. The observations showed gamma-ray line and continuum emission extending to the highest energy observed. The lines are identified with the 2.2 MeV line of deuterium formation and the 4.4 MeV line of inelastic scattering on 12C, both previously observed in the flares of August 1972 [1]. The 11 July flare was identified as a white-light flare by observations at Debrecen [2]. It thus provides the first opportunity for a detailed examination of white-light flare theories that depend upon proton heating of the photosphere. The line strength over a four-minute integration at 2.2 MeV was 1.00 ± 0.29 ph(cm2 sec)−1, and the gamma-ray emission (excluding the 2.2 MeV line which was appreciably delayed) lagged by less than 20 sec approximately after the hard X-ray and microwave fluxes. We conclude that the “second-stage” acceleration of high-energy solar particles must commence promptly after the impulsive phase.  相似文献   

12.
The Balloon Borne Experiment with a Superconducting Solenoid Spectrometer (BESS) was flown annually in 1993, 1994, and 1995. In this report we present the energy spectra and isotopic composition of cosmic ray H and He measured from the 1993 flight. The low energy fluxes of H and He agree with the IMP-8 satellite data for a 26 day period (7/14/93 – 8/9/93) that overlapped the BESS flight. Both 2H and 3He were well separated from 1H and 4He. The measured spectra were corrected for the atmospheric overburden and compared with the interstellar/heliospheric propagation calculations.  相似文献   

13.
COS-B gamma-ray data (70–5000 MeV) in the latitude range 10°< |b| <90° are compared with the expected emission from cosmic-ray interactions with interstellar gas. An additional component is found to be necessary to explain the latitude dependence of the emission. Two possible origins for this component are discussed: a gamma-ray halo around the Galaxy and a local emission region.  相似文献   

14.
Radio and gamma-ray emissions in Active Galactic Nuclei (AGNs) are both related to the presence of relativistic particles in jets. With the advent of the Fermi Large Area Telescope (LAT), and thanks to its large sensitivity up to several GeV, many observational results are changing our understanding of these phenomena. BL Lac objects, which made up only a fraction of the known extragalactic gamma-ray source population before Fermi, have now become the most abundant class. However, since they are relatively weak radio sources, most of them are poorly known as far as their parsec scale structure and multi-wavelength properties are concerned. For this reason, we have selected a complete sample of 42 low redshift BL Lacs (independently of their gamma-ray properties) to study with a multi-wavelength (radio, optical, X-ray, gamma-ray) approach. Here, we present results and images of sources in the sample (most of which have never been observed before), using new VLBA observations at 8 and 15 GHz. Beyond this sample of BL Lacs, the population of gamma-ray AGNs has also dramatically enlarged in the Fermi era, permitting us to discuss the presence of a correlation between radio and gamma-ray properties with improved statistical significance. We explore the radio-gamma relation with several hundreds sources and using both simultaneous and archival radio data, thus tackling the impact of time variability.  相似文献   

15.
Contemporary gamma-ray spectroscopy instruments and their results are reviewed. Sensitivities of 10?4 to 10?3 ph/cm2-sec have been achieved for steady sources and 10?2 to 1 ph/cm2-sec for transient sources. This has led to the detection of gamma-ray lines from more than 40 objects representing 6 classes of astrophysical phenomena. The lines carry model-independent information and are of fundamental importance to theoretical modeling and our understanding of the objects. These results indicate that gamma-ray spectroscopy is relevant to a wide range of astrophysical problems and is becoming a major part of astronomy. The objectives and anticipated results of future instruments are discussed. Several instruments in development will have a factor of ~ 10 sensitivity improvement to certain phenomena over contemporary instruments. A factor of ~ 100 improvement in sensitivity will allow the full potential of gamma-ray spectroscopy to be realized. Instrument concepts which would achieve this with both present and advanced techniques are discussed.  相似文献   

16.
New experimental data obtained on the orbital station ‘MIR’ in 1991 during solar maximum are discussed. Electron fluxes with Ee>75 keV were registered for three different directions as well as for electrons with Ee>300 and 600 keV. Spatial and time distributions of electron fluxes in the trapping region are presented. In the inner radiation belt an additional maximum is observed at L=1.25–1.35, and the fluxes in the 22-05h MLT interval are 2–3 orders of magnitude smaller, than during other local times. In this region a flattening of the electron spectrum is observed. The results obtained were compared with the AE-8 model.  相似文献   

17.
The LIULIN-3M instrument is a further development of the LIULIN dosimeter-radiometer, used on the MIR spacestation during the 1988-1994 time period. The LIULIN-3M is designed for continuous monitoring of the radiation environment during the BION-12 satellite flight in 1999. A semiconductor detector with 1 mm thickness and cm2 area is contained in the instrument. Pulse high analysis technique is used to determine the energy losses in the detector. The final data from the instrument are the flux and the dose rate for the exposure time and 256 channels of absorbed dose spectra based on the assumption that the particle flux is normal to the detector. The LIULIN-3M instrument was calibrated by proton fluxes with different energies at the Indiana University Cyclotron Facility in June 1997 and had been used for radiation measurements during commercial aircraft flights. The calibration procedure and some flight results are presented in this paper.  相似文献   

18.
Recent gamma-ray observations of two Seyfert Galaxies are interpreted in terms of electron-positron pair annihilation radiation. A simplified scenario is envisaged in which a massive black hole is accreting material from an optically thin disk characterized by a hot (T > 109 °K) e± plasma. At these very high temperatures the 511 keV line emission loses its characteristic features to become both broadened and blue shifted. Observational X and gamma-ray data are used to investigate the possibility that the “bump” in the spectral emission at photon energies E ~ 1 MeV observed in Seyfert galaxies may be due to this annihilation feature. In particular the self consistency of the parameters estimated from the gamma-ray data is explored. Furthermore we investigate the possibility that this annihilation feature may be mirrored in the cosmic diffuse background and, under this assumption, we calculate the maximum temperature of the annihilation region and the average annihilation rate for Seyfert galaxies.  相似文献   

19.
本文给出了我国卫星上半导体电子探测器的一些探测结果。通过对数据的分析,得到了内辐射带中心区电子通量的典型值,大于0.5MeV和1.0MeV两个能档的全向通量分别为1.9×108和6.7×107ele./s·cm2.同时也给出了在典型轨道上电子通量随时间的变化剖面。此外,还得到了同步高度上述两个能档电子的全向通量分别为20.43×106和4.25×105ele./s·cm2.同时也给出了观测到的同步高度外辐射带电子的日变化。结果与国外观测资料基本相符。   相似文献   

20.
Problems connected with mechanisms for comet brightness outbursts as well as for gamma-ray bursts remain open. Meantime, calculations show that irradiation of a certain class of comet nuclei, having high specific electric resistance, by intense fluxes of energetic protons and positively charged ions with kinetic energies more than 1 MeV/nucleon, ejected from the Sun during strong solar flares, can produce a macroscopic high-voltage electric double layer with positive charge in the subsurface zone of the nucleus, during irradiation times of the order of 10–100 h at heliocentric distances around 1–10 AU. The maximum electric energy accumulated in such layer will be restricted by the electric discharge potential of the layer material. For comet nuclei with typical radii of the order of 1–10 km the accumulated energy of such natural electric capacitor is comparable to the energy of large comet outbursts that are estimated on the basis of ground based optical observations. The impulse gamma and X-ray radiation together with optical burst from the comet nucleus during solar flares, anticipated due to high-voltage electric discharge, may serve as an indicator of realization of the processes above considered. Multi-wavelength observations of comets and pseudo-asteroids of cometary origin, having brightness correlation with solar activity, using ground based optical telescopes as well as space gamma and X-ray observatories, during strong solar flares, are very interesting for the physics of comets as well as for high energy astrophysics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号