首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In plants, sensitive and selective mechanisms have evolved to perceive and respond to light and gravity. We investigated the effects of microgravity on the growth and development of Arabidopsis thaliana (ecotype Landsberg) in a spaceflight experiment. These studies were performed with the Biological Research in Canisters (BRIC) hardware system in the middeck region of the space shuttle during mission STS-131 in April 2010. Seedlings were grown on nutrient agar in Petri dishes in BRIC hardware under dark conditions and then fixed in flight with paraformaldehyde, glutaraldehyde, or RNAlater. Although the long-term objective was to study the role of the actin cytoskeleton in gravity perception, in this article we focus on the analysis of morphology of seedlings that developed in microgravity. While previous spaceflight studies noted deleterious morphological effects due to the accumulation of ethylene gas, no such effects were observed in seedlings grown with the BRIC system. Seed germination was 89% in the spaceflight experiment and 91% in the ground control, and seedlings grew equally well in both conditions. However, roots of space-grown seedlings exhibited a significant difference (compared to the ground controls) in overall growth patterns in that they skewed to one direction. In addition, a greater number of adventitious roots formed from the axis of the hypocotyls in the flight-grown plants. Our hypothesis is that an endogenous response in plants causes the roots to skew and that this default growth response is largely masked by the normal 1?g conditions on Earth.  相似文献   

2.
《Acta Astronautica》2007,60(4-7):460-471
This study identifies genes that determine survival during a space flight, using the model eukaryotic organism, Saccharomyces cerevisiae. Select strains of a haploid yeast deletion series grew during storage in distilled water in space, but not in ground based static or clinorotation controls. The survival advantages in space in distilled water include a 133-fold advantage for the deletion of PEX19, a chaperone and import receptor for newly- synthesized class I peroxisomal membrane proteins, to 77–40 fold for deletion strains lacking elements of aerobic respiration, isocitrate metabolism, and mitochondrial electron transport. Following automated addition of rich growth media, the space flight was associated with a marked survival advantage of strains with deletions in catalytically active genes including hydrolases, oxidoreductases and transferases. When compared to static controls, space flight was associated with a marked survival disadvantage of deletion strains lacking transporter, antioxidant and catalytic activity. This study identifies yeast deletion strains with a survival advantage during storage in distilled water and space flight, and amplifies our understanding of the genes critical for survival in space.  相似文献   

3.
A numerical analysis was performed to compare natural convection velocities in two-dimensional enclosures of various shape. The following shapes were investigated: circle, square, horizontal and upright 2 × 1 aspect ratio rectangles, horizontal and upright half-circles, diamond (square oriented with diagonal vertical) and triangle (equilateral and horizontal base). In all cases, the length scale in the various dimensionless parameters, such as Rayleigh number, is defined as the diameter of the equal area circle. Natural convection velocities were calculated for Rayleigh numbers of 100 and 500 with the temperature difference taken to be across (a) the maximum horizontal dimension, (b) the median horizontal line (line through centroid) and (c) the horizontal distance such that the temperature gradient is the same for shapes of equal area. A Rayleigh number of 1000 is within the “low Rayleigh number” range for agreement with first order theory for circular enclosures. A Rayleigh number of 5000 is slightly out of this range. For the class of shapes including the square, upright half-circle and upright rectangle, the computed velocities were found to agree very closely with that of the equal area circle when the temperature difference is taken to be across the maximum horizontal dimension [condition (a)]. The velocities for the horizontal rectangle and half circle were found to be approximately one-half that of the equal area circle for the same condition. Better overall agreement among all shapes was obtained by setting the temperature difference across a distance such that the temperature gradients were equal for shapes of equal area.  相似文献   

4.
Zone electrophoresis is a highly efficient method of separating biological products. It is based on the differences of mobilities of ionized particles in an electric field. During the separation complications arise due to electro-osmosis or thermal convection generated by Joule heating.This paper analyses the hydrodynamical running of a continuous flow zone electrophoresis cell and shows the influence of specific parameters on the separation.The modelling of the flow structure of the buffer solution is developed. The equations and the corresponding boundary conditions are solved by finite difference method. The model established provides knowledge of the hydrodynamical perturbations generated by electro-osmosis and thermal free convection. The case of microgravity is considered.  相似文献   

5.
The control of the body orientation and the center of mass position with respect to the feet was investigated under normo- and microgravity (space flight Altair), during erect posture and at the end of a forward or backward upper trunk movement.

It was observed that during erect posture, the trunk orientation with respect to the vertical was inclined some 6 ° forward in both subjects under microgravity, whereas it was vertical or slightly backward oriented under normogravity. Under microgravity, on the contrary, the initial position CM changed either backwards or forwards. This result suggests that the inclined trunk posture might be due to misevaluating the vertically under microgravity and that different control mechanisms are involved in orienting the trunk and placing the CM.

It was also noted that the final position of the CM at the end of the movement did not differ markedly between microgravity and normogravity. This result suggests that the kinematic synergies which stabilize the CM during uppertrunk movements may result from an automatic central control which is independent from the gravity constraints.  相似文献   


6.
The study of the instability of the float zone in microgravity is necessary in order to produce pure and homogeneous crystals. Three types of instabilities may be present in a float zone. The first two, the static and dynamic instabilities, have been investigated by many authors. The third, onset of Marangoni convection is investigated in this study. The Navier-Stokes equations and the energy equation, in cylindrical coordinates, were solved using the finite element method. These pure and homogeneous germanium crystals will find application as integral components of sensitive γ radiation measuring equipment.  相似文献   

7.
The influence of pressure in the range of 3–15 kgf/cm2 on combustion intensity is studied experimentally in a medium-sized rig. The apparatus is described and temperature measurements by different thermocouple techniques are discussed; gas composition was monitored by gas chromatography. The experiments were performed at different cross sections allowing to map temperatures and gas concentrations. The results show that temperature and carbon dioxide concentration increase more rapidly as the pressure is raised. Carbon monoxide appears as an intermediate and is concentrated near the combustion axis. The combustion zone becomes shorter with increasing pressure and the combustion intensity increases correspondingly.  相似文献   

8.
This paper describes a technical device, INCUBATOR 1M, which enables incubation of Japanese quail eggs aboard the piloted orbital station.  相似文献   

9.
Electrical eddy currents induced migration of droplets, whose conductivity differs from that of surrounding fluid, is analysed. Eddy currents in a dilute suspension under consideration, which fills the dielectric tube, are induced by alternating magnetic field parallel to the tube axis. In the case where the droplet radius is small as compared to the skin depth, the distributions of magnetic fields, currents and electromagnetic forces inside and outside the droplet have been calculated. For small Reynolds numbers, with neglecting inertial and thermocapillary effects and the gravity, the flow of fluids around the droplet and inside it, caused by electromagnetic forces, has been studied. The formula is obtained, which relates the droplet migration velocity to the electro-magnetic field, the droplet size and physical properties of fluids.  相似文献   

10.
Humans have mental representation of their environment based on sensory information and experience. A series of experiments has been designed to allow the identification of disturbances in the mental representation of three-dimensional space during space flight as a consequence of the absence of the gravitational frame of reference. This NASA/ESA-funded research effort includes motor tests complemented by psychophysics measurements, designed to distinguish the effects of cognitive versus perceptual-motor changes due to microgravity exposure. Preliminary results have been obtained during the microgravity phase of parabolic flight. These results indicate that the vertical height of handwritten characters and drawn objects is reduced in microgravity compared to normal gravity, suggesting that the mental representation of the height of objects and the environment change during short-term microgravity. Identifying lasting abnormalities in the mental representation of spatial cues will establish the scientific and technical foundation for development of preflight and in-flight training and rehabilitative schemes, enhancing astronaut performance of perceptual-motor tasks, for example, interaction with robotic systems during exploration-class missions.  相似文献   

11.
A primary objective of the International Space Station is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. Since continuous human presence on the space station began in November 2000 through the end of Increment-6, over 1260 hours of crew time have been allocated to research. However, far more research time has been accumulated by experiments controlled on the ground. By the end of the time period covered by this paper (end of Increment-6), the total experiment hours performed on the station are well over 100,000 hours (Expedition 6 Press Kit: Station Begins Third Year of Human Occupation, Boeing/USA/NASA, October 25, 2002). This paper presents the results of the on-going effort by the Principal Investigator Microgravity Services project, at NASA Glenn Research Center, in Cleveland, Ohio, to characterize the microgravity environment of the International Space Station in order to keep the microgravity scientific community apprised of the reduced gravity environment provided by the station for the performance of space experiments. This paper focuses on the station microgravity environment for Increments 5 and 6. During that period over 580 Gbytes of acceleration data were collected, out of which over 34,790 hours were analyzed. The results presented in this paper are divided into two sections: quasi-steady and vibratory. For the quasi-steady analysis, over 7794 hours of acceleration data were analyzed, while over 27,000 hours were analyzed for the vibratory analysis. The results of the data analysis are presented in this paper in the form of a grand summary for the period under consideration. For the quasi-steady acceleration response, results are presented in the form of a 95% confidence interval for the station during "normal microgravity mode operations" for the following three attitudes: local vertical local horizontal, X-axis perpendicular to the orbit plane and the Russian torque equilibrium attitude. The same analysis was performed for the station during "non-microgravity mode operations" to assess the station quasi-steady acceleration environment over a long period of time. The same type of analysis was performed for the vibratory, but a 95th percentile benchmark was used, which shows the overall acceleration magnitude during Increments 5 and 6. The results, for both quasi-steady and vibratory acceleration response, show that the station is not yet meeting the microgravity requirements during the microgravity mode operations. However, it should be stressed that the requirements apply only at assembly complete, whereas the results presented below apply up to the station's configuration at the end of Increment-6.  相似文献   

12.
王毅  常小庆 《火箭推进》2007,33(3):31-35
以部分管理表面张力贮箱的管理舱为研究对象,利用三维气液平衡界面计算程序Surface Evolver,在无重力和微重力且几何边界条件比较复杂的环境下对管理舱内的气液平衡界面进行数值模拟;计算结果与已经应用卫星的理论计算完全吻合。  相似文献   

13.
A technique for calculation of the glow around low-orbit spacecraft is developed, taking into consideration the kinetics of neutral particles. Using this technique, the altitude ranges are determined where molecular processes dominate over ion-electron mechanisms. The influence of the molecular composition of the Earth’s atmosphere on the production of excited radicals NO 2 * near the surface of spacecraft is studied in some detail.  相似文献   

14.
MHD-flow during melting of a spherical metal sample under contactless positioning by alternating magnetic field produced by two circular turns with currents, is investigated. It is shown that when the currents supplying the turns are opposite in direction, electromagnetic forces, originating from the interaction of the Foucault currents with alternating magnetic field, induce two torus-like eddies in the interior of the molten metal drop.  相似文献   

15.
对世界范围内的典型民用无线电业务进行了归纳分析,在空域、时域、频域和能量域等详细参数计算的基础上,分析了民用发射信号对电磁环境中电子设备接收机的影响,并提出了多种建议方法以最大限度地减小民用发射信号对电子设备系统设计的影响。  相似文献   

16.
In the present investigation we report the effects of simulated microgravity conditions (clinostat) on the induction of chromosomal aberrations in human lymphocytes in vitro by (R) Bleomycin. Chromosomal aberrations have been analysed by means of fluorescent in situ hybridisation (FISH) and chromosome-specific composite DNA probes (chromosome painting). The results obtained show that, under simulated microgravity conditions, the levels of both symmetrical and asymmetrical (dicentrics, rings), the number of cells bearing "complex" aberrations and hence the total numbers of aberrations were significantly elevated at any of the dose-levels assayed, compared to the parallel treatments performed as 1g control ("ground"). Furthermore, the ratio symmetrical:asymmetrical translocations was markedly elevated under simulated microgravity conditions, compared to the findings usually observed under "normal" 1g conditions. On these bases, we are much inclined to believe that simulated microgravity, rather than limiting the resealing of DNA double strand breaks (DSB's) induced by genotoxic agents is influencing in terms of enhancement the misrejoining of DSB's which is actually responsible for the fixation of the original lesions to DNA into chromosomal aberrations. In addition, the possible different misrepair processes leading to the formation of symmetrical and asymmetrical translocations might be differentially influenced by microgravity being the symmetrical translocations significantly more represented.  相似文献   

17.
Iwase S 《Acta Astronautica》2005,57(2-8):75-80
To test the effectiveness of centrifuge-induced artificial gravity with ergometric exercise, 12 healthy young men (20.7 +/- 1.9 yr) were exposed to simulated microgravity for 14 days of -6 degrees head-down bedrest. Half the subjects were randomly selected and loaded 1.2 G artificial gravity with 60 W (four out of six subjects) or 40 W (two out of six subjects) of ergometric workload on days 1, 2, 3, 5, 7, 9, 11, 12, 13, 14 (CM group). The rest of the subjects served as the control. Anti-G score, defined as the G-load x running time to the endpoint, was significantly elongated by the load of the centrifuge-ergometer. Plasma volume loss was suppressed (-5.0 +/- 2.4 vs. -16.4 +/- 1.9%), and fluid volume shift was prevented by the countermeasure load. Elevated heart rate and muscle sympathetic nerve activity after bedrest were counteracted, and exaggerated response to head-up tilt was also suppressed. Centrifuge-induced artificial gravity with exercise is effective in preventing cardiovascular deconditioning due to microgravity exposure, however, an effective and appropriate regimen (magnitude of G-load and exercise workload) should be determined in future studies.  相似文献   

18.
The results of experiments that were performed to test the feasibility of creating sandwich structures (consisting of thin-layer sheaths of polymer composites and a cellular polymer core) with the shapememory effect as models of the transformable components of space structures have been given. The data obtained indicate that samples of sandwich structures under microgravity conditions on board the International Space Station have recovered their shape to almost the same degree as under terrestrial conditions, which makes it possible to recommend them for creating components of transformable space structures on their basis.  相似文献   

19.
Chiu B  Wan JZ  Abley D  Akabutu J 《Acta Astronautica》2005,56(9-12):918-922
Recent studies have demonstrated that stem cells derived from adult hematopoietic tissues are capable of trans-differentiation into non-hematopoietic cells, and that the culture in microgravity (microg) may modulate the proliferation and differentiation. We investigated the application of microg to human umbilical cord blood stem cells (CBSC) in the induction of vascular endothelial phenotype expression and cellular proliferation. CD34+ mononuclear cells were isolated from waste human umbilical cord blood samples and cultured in simulated microg for 14 days. The cells were seeded in rotary wall vessels (RWV) with or without microcarrier beads (MCB) and vascular endothelial growth factor was added during culture. Controls consisted of culture in 1 G. The cell cultures in RWV were examined by inverted microscopy. Cell counts, endothelial cell and leukocyte markers performed by flow cytometry and FACS scan were assayed at days 1, 4, 7 and at the termination of the experiments. Culture in RWV revealed significantly increased cellular proliferation with three-dimensional (3D) tissue-like aggregates. At day 4, CD34+ cells cultured in RWV bioreactor without MCB developed vascular tubular assemblies and exhibited endothelial phenotypic markers. These data suggest that CD34+ human umbilical cord blood progenitors are capable of trans-differentiation into vascular endothelial cell phenotype and assemble into 3D tissue structures. Culture of CBSC in simulated microg may be potentially beneficial in the fields of stem cell biology and somatic cell therapy.  相似文献   

20.
王华伟 《宇航学报》2004,25(6):655-658,662
液体火箭发动机试验费用昂贵、可靠性要求高,有必要采用分析和决策技术对可靠性增长进行综合管理。传统的可靠性增长分析与决策是采用可靠性增长模型,包括经典可靠性增长模型和Bayes可靠性增长模型。可靠性增长模型以可靠度的点估计或置信下降作为决策标准,缺陷是没有考虑可靠度本身的不确定性以及由决策损失导致的严重后果。本文根据液体火箭发动机的特点,采用信息融合技术,建立了基于增长数据折合的Bayes指数分布可靠性增长模型,评估可靠性水平。针对评估结果存在的不确定性,采用Bayes风险决策方法确定停止可靠性增长试验时间的标准。工程应用表明:该方法可操作性强,得出的结果科学、可靠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号