首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An important question in studies on mental rotation is whether the mental object rotation and the egocentric body transformation rely on dissociable mechanisms. We tested non-dancers and professional dancers as experts in the mental object rotation task (MORT, 3D-cubes used by Shepard & Metzler, 1971) and the mental body transformation task (MBRT, line drawings of human bodies similar to those used by Parsons, 1987). The cubes and body figures were presented in exactly the same rotation conditions; in the picture plane, 0 degree, 45 degrees, 90 degrees, 135 degrees, and 180 degrees, and in combination with a rotation in depth, 0 degree (the stimuli are rotated in the picture plane only) and 180 degrees. We could replicate the linear increase in RT with increasing angle for the cubes whereas the RT for rotated body figures increased for not depth-rotated bodies only (back view). Though, the RTs for inverted body figures were faster when they were rotated in depth (front view) compared to when they were rotated in the picture plane only (back view). This finding suggests that participants use different strategies depending on the perceived orientation of the stimulus. The results indicate impaired performance in the MORT for the experts.  相似文献   

2.
The functional approach to studying human motor systems attempts to give a better understanding of the processes behind planning movements and their coordinated performance by relying on weightlessness as a particularly enlightening experimental condition. Indeed, quantitative monitoring of sensorimotor adaptation of subjects exposed to weightlessness outlines the functional role of gravity in motor and postural organization. The recent accessibility of the MIR Space Station has allowed for the first time experimental quantitative kinematic analysis of long-term sensorimotor and postural adaptation to the weightless environment though opto-electronic techniques. In the frame of the EUROMIR'95 Mission, two protocols of voluntary posture perturbation (erect posture, EP; forward trunk bending, FTB) were carried out during four months of microgravity exposure. Results show that postural strategies for quasistatic body orientation in weightlessness are based on the alignment of geometrical body axes (head and trunk) along external references. A proper whole body positioning appears to be recovered only after months of microgravity exposure. By contrast, typically, terrestrial strategies of co-ordination between movement and posture are promptly restored and used when performing motor activities in the weightless environment. This result is explained under the assumption that there may be different sensorimotor integration processes for static and dynamic postural function and that the organisation of coordinated movement might rely stably on egocentric references and kinematics synergies for motor control.  相似文献   

3.
Humans have mental representation of their environment based on sensory information and experience. A series of experiments has been designed to allow the identification of disturbances in the mental representation of three-dimensional space during space flight as a consequence of the absence of the gravitational frame of reference. This NASA/ESA-funded research effort includes motor tests complemented by psychophysics measurements, designed to distinguish the effects of cognitive versus perceptual-motor changes due to microgravity exposure. Preliminary results have been obtained during the microgravity phase of parabolic flight. These results indicate that the vertical height of handwritten characters and drawn objects is reduced in microgravity compared to normal gravity, suggesting that the mental representation of the height of objects and the environment change during short-term microgravity. Identifying lasting abnormalities in the mental representation of spatial cues will establish the scientific and technical foundation for development of preflight and in-flight training and rehabilitative schemes, enhancing astronaut performance of perceptual-motor tasks, for example, interaction with robotic systems during exploration-class missions.  相似文献   

4.
We evaluated the influence of prolonged weightlessness on the performance of visual tasks in the course of the Russian-French missions ANTARES, Post-ANTARES and ALTAIR aboard the MIR station. Eight cosmonauts were subjects in two experiments executed pre-flight, in-flight and post-flight sessions.

In the first experiment, cosmonauts performed a task of symmetry detection in 2-D polygons. The results indicate that this detection is locked in a head retinal reference frame rather than in an environmentally defined one as meridional orientations of symmetry axis (vertical and horizontal) elicited faster response times than oblique ones. However, in weightlessness the saliency of a retinally vertical axis of symmetry is no longer significantly different from an horizontal axis. In the second experiment, cosmonauts performed a mental rotation task in which they judged whether two 3-D objects presented in different orientations were identical. Performance on this task is basically identical in weightlessness and normal gravity.  相似文献   


5.
Previous research has shown that training can improve mental rotation performance and has found connections between mental and manual rotation. Here we examine how practice in mental or manual (virtual) rotation, affects performance on mental and manual rotation tasks, compared to a control condition. Experiment 1 examined improvement on a mental rotation task following practice in mental or manual rotation. Both mental and manual rotation practice led to more efficient posttest performance. Experiment 2 examined improvement on a manual rotation task. Practice in manual but not mental rotation led to improved performance. Analyses of the manual rotation trajectories revealed no evidence of strategy differences. These results suggest that manual rotation may require additional processes outside of those needed for mental rotation. In terms of training effects, manual rotation training improved both manual and mental rotation performance, whereas mental rotation only significant improved mental rotation performance.  相似文献   

6.
Choosing the “right” satellite platform for a given market and mission requirements is a major investment decision for a satellite operator. With a variety of platforms available on the market from different manufacturers, and multiple offerings from the same manufacturer, the down-selection process can be quite involved. In addition, because data for on-obit failures and anomalies per platform is unavailable, incomplete, or fragmented, it is difficult to compare options and make an informed choice with respect to the critical attribute of field reliability of different platforms. In this work, we first survey a large number of geosynchronous satellite platforms by the major satellite manufacturers, and we provide a brief overview of their technical characteristics, timeline of introduction, and number of units launched. We then analyze an extensive database of satellite failures and anomalies, and develop for each platform a “health scorecard” that includes all the minor and major anomalies, and complete failures—that is failure events of different severities—observed on-orbit for each platform. We identify the subsystems that drive these failure events and how much each subsystem contributes to these events for each platform. In addition, we provide the percentage of units in each platform which have experienced failure events, and, after calculating the total number of years logged on-orbit by each platform, we compute its corresponding average failure and anomaly rate. We conclude this work with a preliminary comparative analysis of the health scorecards of different platforms.The concept of a “health scorecard” here introduced provides a useful snapshot of the failure and anomaly track record of a spacecraft platform on orbit. As such, it constitutes a useful and transparent benchmark that can be used by satellite operators to inform their acquisition choices (“inform” not “base” as other considerations are factored in when comparing different spacecraft platforms), and by satellite manufacturers to guide their testing and reliability improvement programs. Finally, it is important to keep in mind that these health scorecards should be considered dynamic documents to be updated on a regular basis if they are to remain accurate and relevant for comparative analysis purposes, as new information will impact their content.  相似文献   

7.
We present ongoing research in the application of information theory to animal communication systems with the goal of developing additional detectors and estimators for possible extraterrestrial intelligent signals. Regardless of the species, for intelligence (i.e., complex knowledge) to be transmitted certain rules of information theory must still be obeyed. We demonstrate some preliminary results of applying information theory to socially complex marine mammal species (bottlenose dolphins and humpback whales) as well as arboreal squirrel monkeys, because they almost exclusively rely on vocal signals for their communications, producing signals which can be readily characterized by signal analysis. Metrics such as Zipf's Law and higher-order information-entropic structure are emerging as indicators of the communicative complexity characteristic of an “intelligent message” content within these animals’ signals, perhaps not surprising given these species’ social complexity. In addition to human languages, for comparison we also apply these metrics to pulsar signals—perhaps (arguably) the most “organized” of stellar systems—as an example of astrophysical systems that would have to be distinguished from an extraterrestrial intelligence message by such information theoretic filters. We also look at a message transmitted from Earth (Arecibo Observatory) that contains a lot of meaning but little information in the mathematical sense we define it here. We conclude that the study of non-human communication systems on our own planet can make a valuable contribution to the detection of extraterrestrial intelligence by providing quantitative general measures of communicative complexity. Studying the complex communication systems of other intelligent species on our own planet may also be one of the best ways to deprovincialize our thinking about extraterrestrial communication systems in general.  相似文献   

8.
Strategy for capturing of a tumbling space debris   总被引:5,自引:0,他引:5  
In general space debris objects do not possess much convenient features and are non-cooperative. In such cases, since the conditions for capture are not favorable, tracking errors will lead to loading, and momentum transfer will occur during the capture process.In most cases, detailed mass and inertial characteristics of the target are unknown, either because design details are unavailable or due to changes as a result of damage sustained when failure occurred or gradual degradation over the years, and this makes impedance matching of the capture arm force control system difficult.This led to us to devise a “joint virtual depth control” algorithm for robot arm control, which brakes the rotation of a target with unknown inertia. This paper deals with a removal work strategy and control method for capturing and braking a tumbling, non-cooperative target space debris.We propose a new brush type contactor as end-effecter of a robot arm for reducing the rotational rate of the target debris. As a means for relieving the loads generated during target tapping, in addition to joint compliance control we propose a new control method that controls the arm tip force according to a contact force profile.  相似文献   

9.
Experimental observations of adaptation processes of the motor control system to altered gravity conditions can provide useful elements to the investigations on the mechanisms underlying motor control of human subject. The microgravity environment obtained on orbital flights represents a unique experimental condition for the monitoring of motor adaptation. The research in motor control exploits the changes caused by microgravity on the overall sensorimotor process, due to the impairment of the sensory systems whose function depends upon the presence of the gravity vector. Motor control in microgravity has been investigated during parabolic flights and short-term space missions, in particular for analysis of movement-posture co-ordination when equilibrium is no longer a constraint. Analysis of long-term adaptation would also be very interesting, calling for long-term body motion observations during the process of complete motor adaptation to the weightlessness environment. ELITE-S2 is an innovative facility for quantitative human movement analysis in weightless conditions onboard the International Space Station (ISS). ELITE-S2 is being developed by the Italian Space Agency, ASI is to be delivering the flight models to NASA to be included in an expressed rack in US Lab Module in February 2004. First mission is currently planned for summer 2004 (increment 10 ULF 2 ISS).  相似文献   

10.
ABSTRACT

This article addresses the topic of conceptual representation of shadows. We analyze several examples of contemporary imagery, taken from advertising and cartooning, to shed light on the way shadow depictions are used as rhetorical devices. Instead of being inserted as a natural phenomenon, rhetorical shadows invite the construction of meaning, and instead of being a mere natural companion of their casters, they reveal things about their casters. Three so-called “shadow incongruity types” are distinguished: (1) shadows revealing the “true nature” of their caster or the “hidden contents” of the caster’s mind; (2) shadows marking some transition their caster is involved in; and (3) shadows suggesting a certain quality attached to one of a shadow’s main ingredients (casting object, light source or surface). For each of these types of rhetorical shadows, we demonstrate that the way they convey meaning basically follows the principles of perceiving and understanding natural shadows.  相似文献   

11.
R. Leblanc 《Acta Astronautica》1983,10(10):687-696
(Shock Wave-Laminar Boundary Layer Interaction on a Spinning Axisymmetric Body)—A method is developed to predict the shock wave-laminar boundary layer interaction on an axisymmetric body spinning in axial flow. The integral scheme of Lees, Reeves and Klineberg is used. The Falkner Skan “type” equations is then established for the boundary layer on spinning cylinder and used to construct the polynomial representation of the integral quantities. The independence of the polynomials with respect to the spinning rate is demonstrated. A cylinder of 200 mm diameter with a flare is built and tested up to 5000 rmp in wind tunnel at M = 2.21. The pressure measurements are in good agreement with the theoretical results. The rotation induces the decreasing of the pressure level and boundary layer separation inside the interaction region.  相似文献   

12.
Space technology and resources are used around the world to address societal challenges. Space provides valuable satellite services, unique scientific discoveries, surprising technology applications and new economic opportunities. Many developing countries formally recognize the advantages of space resources and pursue national level activity to harness them. There is limited data or documentation on the space activities of developing countries. Meanwhile, traditional approaches to summarize national space activity do not necessarily capture the types of activity that developing countries pursue in space. This is especially true if they do not have a formal national space program or office. Developing countries pursue national space activity through activities of many types—from national satellite programs to commercial use of satellite services to involvement with international space institutions. This research aims to understand and analyze these trends. This paper introduces two analytical frameworks for evaluating space activity at the national level. The frameworks are specifically designed to capture the activity of countries that have traditionally been less involved in space. They take a broad view of space related activity across multiple societal sectors and disciplines. The discussion explains the approach for using the frameworks as well as illustrative examples of how they can be applied as part of a research process. The first framework is called the Mission and Management Ladders. This framework considers specific space projects within countries and ranks them on “Ladders” that measure technical challenge and managerial autonomy. This first method is at a micro level of analysis. The second framework is called the Space Participation Metric (SPM). The SPM can be used to assign a Space Participation score to countries based on their involvement in various space related activities. This second method uses a macro level of analysis. The authors developed both frameworks as part of a long term research program about the space activities of developing countries. This aspect of the research focuses on harnessing multiple techniques to summarize complex, multi-disciplinary information about global space activity.  相似文献   

13.
14.
Movement experts tend to outperform non-experts on some tasks of spatial ability, suggesting that movement experts possess enhanced spatial-cognitive abilities, which may be developed over years of practice. In the current study, movement experts (dancers and athletes) and non-experts completed one verbal working memory task and two spatial working memory tasks—a traditional Corsi block-tapping task and a new full-bodied version of the Corsi task, nicknamed the “Twister Task.” Movement experts outperformed non-experts on both the Corsi and Twister tasks but not on the verbal task, suggesting that movement experience may relate to spatial working memory specifically. Additionally, the Twister task significantly correlated with the traditional Corsi task, providing validation for a new measure of spatial working memory.  相似文献   

15.
Sequin AM 《Acta Astronautica》2005,56(9-12):980-995
The human fascination with exploring and inhabiting the space that lies beyond Earth's atmosphere continues to grow. Nevertheless, 40 years of experience to date have clearly established that humans in outer space routinely suffer significant psychological impairment arising from their stressful extraterrestrial living conditions. This paper explores those extraterrestrial conditions through the interactions between the extraordinarily harsh environment of outer space, the sensations that humans encounter in space, and the qualities of a habitat that physically interposes itself between the two. The objective of this paper is to develop a habitat that expresses the extraterrestrial condition while supporting the mental health of its inhabitants, so as to augment the success of prolonged extraterrestrial residence and interplanetary travel.  相似文献   

16.
Loeb A  Turner EL 《Astrobiology》2012,12(4):290-294
Existing and planned optical telescopes and surveys can detect artificially illuminated objects, comparable in total brightness to a major terrestrial city, at the outskirts of the Solar System. Orbital parameters of Kuiper belt objects (KBOs) are routinely measured to exquisite precisions of<10(-3). Here, we propose to measure the variation of the observed flux F from such objects as a function of their changing orbital distances D. Sunlight-illuminated objects will show a logarithmic slope α ≡ (d log F/d log D)=-4, whereas artificially illuminated objects should exhibit α=-2. The proposed Large Synoptic Survey Telescope (LSST) and other planned surveys will provide superb data and allow measurement of α for thousands of KBOs. If objects with α=-2 are found, follow-up observations could measure their spectra to determine whether they are illuminated by artificial lighting. The search can be extended beyond the Solar System with future generations of telescopes on the ground and in space that would have the capacity to detect phase modulation due to very strong artificial illumination on the nightside of planets as they orbit their parent stars.  相似文献   

17.
This study investigated novices' “lived experiences” of navigation within the sport of orienteering from an enactive and phenomenological approach. The objective was to qualitatively characterize elements of task-related situations that were meaningful for orienteers. The results showed that the participants continuously made judgments about the reliability of their estimations about whether they were on “the right route” on the course. When the participants judged that they were only approximately on the right route or were unable to locate themselves, elements of the situation other than map and terrain features became meaningful for them. These results demonstrate that, for novice orienteers, navigation activity must extend beyond navigation as a logical, computational way-finding problem to include embodied, social, cultural and situated dimensions.  相似文献   

18.
An analysis is performed of the orbital debris collision hazard to operational spacecraft at geosynchronous orbit (GEO). As part of the examination, the contribution of individual components of the population are considered and presented to provide a clearer linkage between object characteristic and resulting risk. Our examination of GEO collision risk reveals several critical new insights: (1) the current probability of collision in GEO is relatively low, yet the future is difficult to predict due to our limited ability to observe objects in GEO and the uncertainty in past and future debris-generating events in GEO; (2) the probability of collision in GEO is not uniform by longitude — it is seven times greater in regions centered about the geopotential wells; (3) the probability of a mission-terminating collision is greatly dependent upon the approximately 2200 objects in the 10 cm–1 m range observed in GEO but not yet cataloged; (4) hardware relocated to GEO “graveyard” disposal orbits pose a potential additional, but not fully understood, collision hazard to operational GEO satellites; and (5) the collision hazard throughout the course of a day or year is highly episodic (i.e. non-uniform).  相似文献   

19.
“Mars-105” experiment was executed in March–July 2009 in Moscow, at the Institute for Bio-Medical Problems (IBMP) with participation of European Space Agency (ESA) to simulate some specific conditions of future piloted Mars mission. In the last 35 days of isolation, in order to simulate autonomous flight conditions, some serious restrictions were established for the crew resupply and communication with Mission Control (MC). The objective of the study was to investigate psychophysiological and behavioral aspects (communication) of adaptation during this period of “high autonomy”. We used computerized analysis of the crew written daily reports to calculate the frequencies of utilization of certain semantic units, expressing different psychological functions. To estimate the level of psycho-physiological stress, we measured the concentration of urinal cortisol once in two weeks. To investigate psycho-emotional state, we used the questionnaire SAN, estimating Mood, Activity and Health once in two weeks.During the simulation of autonomous flight, we found out the different tendencies of communicative behavior. One group of subjects demonstrated the tendency to “activation and self-government” under “high autonomy” conditions. The other subjects continued to use communicative strategy that we called “closing the communication channel”. “Active” communication strategy was accompanied by increasing in subjective scores of mood and activity. The subjects, whose communication strategy was attributed as “closing”, demonstrated the considerably lower subjective scores of mood and activity. Period of high autonomy causes specific changes in communication strategies of the isolated crew.  相似文献   

20.
《Acta Astronautica》1999,44(2-4):215-218
The gravitational lens effect of the Sun would allow, by using a detector at one of its foci, to obtain a “telescope” with gigantic amplification and resolution powers opening extraordinary perspectives for the detailed study of extrasolar planets, particularly technologically advanced ones. But, astronautical challenges are raised by the necessity to align precisely and put in an efficient tracking and scanning mode the detector, necessarily modest in size compared to the dimensions of the planet images and ranges of orbital and rotational motions. In the frame of the FOCAL space mission submitted to ESA, we present the dynamical geometry of the images for two typical cases of observational wavelengths: 10 centimeters (radio) and 10 micrometers (infrared), for a solar-type stellar system 10 parsecs away. Plasma thrusters could provide interesting solutions for the control of the detector for tracking and scanning the focal images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号