首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Array errors are inherent in a realistic phased array radar system. The influence of array errors on the clutter degrees of freedom and the clutter subspace in an airborne phased array radar is analyzed. Based on the presented theoretic results, a method of short-time processing followed by coherent integration is proposed for clutter suppression in airborne phased array radars. It can approximate the two-dimensional optimal processor well even in the presence of array errors, clutter fluctuations and aircraft drift, with a considerable saving in computations  相似文献   

2.
A frequent compromise in the design of long-range search radars has to be made between the maximum unambiguous detection range and the achievable coherent clutter rejection performance. A new class of waveforms is introduced which offers the designer a previously unavailable flexibility in arriving at radar designs with improved clutter rejection without seriously affecting the maximum unambiguous search range. The key to these new waveforms is the recognition that a class of useful N-pulse, nonrecursive, moving target indicator (MTI) canceler designs exists which only requires the radar to transmit a total of N -1 (nonuniformly spaced) pulses.  相似文献   

3.
Uniform coherent pulse trains offer a practical solution to the problem of designing a radar signal possessing both high range and range-rate resolution. The Doppler sensitivity provides some rejection of off-Doppler (clutter) returns in the matched filter receiver. This paper considers the use of a processor in which members of the received pulse train are selectively weighted in amplitude and phase to improve clutter suppression. The techniques described are particularly suitable for rejecting interference entering the processor through ambiguous responses (range sidelobes) of the signal. The complex weights which are derived are optimum in the sense that they produce the maximum clutter suppression for a given detection efficiency. In determining these weights, it is assumed that the distribution of clutter in range and range rate relative to targets of interest is known. Thus, clutter suppression is achieved by reducing the sidelobe levels in specified regions of the receiver response. These techniques are directly applicable to array antennas; the analogous antenna problem would be to reduce sidelobe levels in a particular sector while preserving gain. Complex weighting is most successful when the clutter is limited in both range and velocity.  相似文献   

4.
Clutter echoes with unknown power spectra (from weather, sea, chaff disturbances) can be suppressed only adaptively. The use of the discrete Fourier transform (DFT) for clutter suppression in step scan radars is investigated by use of a clutter model that is derived in analogy to measured clutter data of a radar with a rotating antenna.  相似文献   

5.
This study considers the clutter suppression and feature extraction of multiple moving targets for airborne high range resolution (HRR) phased array radar. To avoid the range migration problems that occur in the HRR radar data, we divide each HRR profile into nonoverlapping low range resolution segments. No information is lost due to the division and hence no loss of resolution occurs. We show how to use a vector auto-regressive filtering technique to suppress the clutter. Then a relaxation-based parameter estimation algorithm is presented for multiple moving target feature extraction. Numerical results are given to demonstrate the effectiveness of the algorithm  相似文献   

6.
基于杂波子空间估计的MIMO雷达降维STAP研究   总被引:1,自引:0,他引:1  
翟伟伟  张弓  刘文波 《航空学报》2010,31(9):1824-1831
 多输入多输出(MIMO)雷达是近年来出现的一种新体制雷达,针对MIMO体制的机载雷达开展空时自适应处理(STAP)技术研究是值得进一步努力的方向。本文研究了机载MIMO雷达STAP技术的降维算法,通过对STAP技术杂波抑制原理进行分析,推导并得到一种基于杂波子空间的降维算法。结合扁长椭球波函数(PSWF)的特点,提出了一种基于杂波子空间估计的降维算法,并与若干降维算法的杂波抑制性能进行比较。结果表明,当存在阵元幅相误差时,该算法在保持杂波抑制性能的同时能够有效地降低STAP算法的运算量。  相似文献   

7.
The problem of detecting coherent pulse trains with uniform amplitude in a clutter-plus-noise environment is considered. A radar processor for detecting targets moving radially with respect to the clutter is proposed. The minimum interpulse spacing of the transmitted signal is assumed long enough that returns are not received simultaneously from different ranges within a region of extended clutter, and the central frequency of the clutter power spectrum is postulated to be known. The processor is singled out as the linear filter, orthogonal to the clutter central frequency component, which yields the maximum ratio of peak signal power to average noise power. The filter can be implemented by slightly modifying the structure of the conventional matched filter. The performance of such a filter is compared with that achievable if full a priori knowledge of the input interference were available and with that of the conventional matched filter. This comparison is made on a signal-to-interference power ratio basis after assuming a transmitted signal consisting of equally spaced pulses and an interference characterized by an exponential covariance matrix.  相似文献   

8.
This paper considers the use of spatio-temporal adaptive array processing in over-the-horizon radar (OTHR) and airborne radar applications in order to remove nonstationary multipath interference, known as “hot clutter”. Since the spatio-temporal properties of hot clutter cannot be assumed constant over the coherent processing interval (CPI), conventional adaptive techniques fail to provide effective hot-clutter mitigation without simultaneously degrading the properties of the backscattered radar signals, known as “cold clutter”. The approach presented incorporates multiple “stochastic” (data-dependent) constraints to achieve effective hot-clutter suppression, while maintaining distortionless output cold-clutter post-processing stationarity  相似文献   

9.
The nature of physical phenomena is such that scattering from portions of an object, a number of objects, or clutter, is not completely unrelated; the underlying environment causes some degree of order in the phenomenon. Radar partial coherence theory describes a structure for the general target, or clutter, and its relationship to radar cross section, waveform coding, and the radar output signal. The clutter ambiguity function is introduced for extended bodies and embraces the (Woodward) ambiguity function for a point target. Due to nonlinear effects caused by partial coherence within the general target, radar signals and targets are formulated in terms of mutual coherence functions. The basic quantities describing the radar output are 1) the radar mutual coherence function (formulated in terms of the radar waveform) and 2) the target mutual coherence function which depends upon target properties, physical environment, and viewing aspect. Random noise (independent point scatterers) and partially coherent portions of reflecting bodies are made accountable in the theory. Partial coherence effects are treated as patches of reflected energy: self-coherent energy patches plus mutually coherent energy among the patches.  相似文献   

10.
In many detection and estimation problems, Doppler frequency shifts are bounded. For clutter or multipath that is uniformly distributed in range and symmetrically distributed in Doppler shift relative to the signal, detectability of a point target or a communication signal is improved by minimizing the weighted volume of the magnitude-squared autoambiguity function. When clutter Doppler shifts are bounded, this volume is in a strip containing the range axis on the range-Doppler plane. For scattering function estimation, e.g., for weather radar, Doppler flow meters, and distributed target classifiers, it is again relevant to minimize ambiguity volume in a strip. Strip volume is minimized by using a pulse train, but such a signal has unacceptably large range sidelobes for most applications. Other waveforms that have relatively small sidelobe level within a strip on the range-Doppler plane, as well as small ambiguity volume in the strip, are obtained. The waveforms are composed of pulse pairs that are phase modulated with Golay complementary codes.  相似文献   

11.
A common but troublesome requirement on radar sensors is the detection of a target in the interference from undesired scatterers, or clutter. Systems with coherent processing of pulse trains are uniquely suited for the purpose because, with pulse trains, it is possible to concentrate the receiver output for particular values of Doppler and thus suppress the clutter by Doppler filtering. This paper discusses to what degree the effectiveness of the method can be enhanced by tapering, or weighting, of the pulse amplitudes. The general results are illustrated by computer-plotted response functions for weighted pulse trains. The clutter suppression efficiency of weighting is calculated both for unilateral weighting in the receiver and for bilateral weighting in both receiver and transmitter. The significance of additional phase weighting is discussed and the results for pure amplitude weighting are compared with publishedwork on phase and amplitude weighting.  相似文献   

12.
Many radar systems now employ wideband waveforms and noncoherent averaging techniques to reduce the scintillation of the backscatter from ground clutter. The purpose of this paper is to quantify the effects of the wideband spectral shape on the clutter standard deviation after noncoherent averaging of the received signal. Relationships are developed which quantify the clutter standard deviation for any spectral shape and any ratio of transmitted band-width to processed bandwidth.  相似文献   

13.
为了提高雷达的射频(RF)隐身性能,结合最优匹配照射-接收机(OTR)理论与序贯假设检验(SHT)方法,提出了一种新的射频隐身雷达信号设计方法。通过发射信号了解外界环境信息,然后反馈这些信息给雷达系统,系统根据这些信息自适应设计雷达发射信号,形成一个闭环系统。以雷达目标识别为具体应用,实验仿真表明,设计的雷达信号自适应变化,减小了信号间的相关性,并且减少了照射次数,降低了辐射功率,从而实现了雷达系统的射频隐身性能。  相似文献   

14.
The problem of designing finite-pulse-train radar signals and receivers to maximize the detectability of targets masked by thermal noise and clutter returns is considered in this paper. A practical constraint is introduced: the amplitude of each subpulse in the transmit waveform is taken to be fixed. The need for such a constraint is dictated in most radar applications, because the transmitter is most efficiently utilized by saturating its amplifying tube. An algorithm for generating optimal waveforms subject to this new constraint is presented, and the performance of the resulting waveforms is compared with those obtained using existing optimization techniques.  相似文献   

15.
A formalism is presented for the analysis of general frequency hop waveforms, such as those suitable for use in coherent active radar and sonar echolocation systems as well as multiple-access spread-spectrum communications. This formalism is based on the concept of coincidence, or `hit', between two frequency hopping patterns. The collection of all possible hits, together with their locations, is recorded in time-frequency space, which produces the high array associated with the two patterns considered. If the code length is sufficiently small with respect to the time-bandwidth product chosen, the hit array can be viewed as a digital representation of the corresponding ambiguity function. Salient properties of the hit array formalism are derived, including simple relationships between hit arrays resulting from basic symmetry-preserving transformations. These properties make it possible to predict the performance of a given set of frequency hop waveforms directly from the associated set of frequency hopping patterns  相似文献   

16.
An algorithm is described which finds optimum transmitter and receiver weights to maximize clutter suppression in a predetermined clutter region when using burst waveforms. It is assumed that the transmitter weights can only take on values from a finite set. This optimization problem is solved using a branch and bound algorithm. An example is given which shows the improvement in clutter suppression when this new design procedure is used as compared to a simpler nonoptimal procedure.  相似文献   

17.
Space-time adaptive processing (STAP) is an effective method adopted in airborne radar to suppress ground clutter. Multiple-input multiple-output (MIMO) radar is a new radar concept and has superiority over conventional radars. Recent proposals have been applying STAP in MIMO configuration to the improvement of the performance of conventional radars. As waveforms transmitted by MIMO radar can be correlated or uncorrelated with each other, this article develops a unified signal model incorporating waveforms for STAP in MIMO radar with waveform diversity. Through this framework, STAP performances are expressed as functions of the waveform covariance matrix (WCM). Then, effects of waveforms can be investigated. The sensitivity, i.e., the maximum range detectable, is shown to be proportional to the maximum eigenvalue of WCM. Both theoretical studies and numerical simulation examples illustrate the waveform effects on the sensitivity of MIMO STAP radar, based on which we can make better trade-off between waveforms to achieve optimal system performance.  相似文献   

18.
Generalized radar clutter model   总被引:2,自引:0,他引:2  
A commonly used density model for radar clutter is chi-square for power, or, equivalently, Rayleigh for amplitude. However, for many modern high resolution radar systems, this density underestimates the tails of the measured clutter density. Log normal and Weibull distributions have proved to be better suited for the clutter in these high resolution radars. Generalizing the chi-square density by replacing it with the noncentral chi-square density and allowing the mean power level (the noncentrality parameter) to vary, we can both suitably shape the clutter density to produce larger tails and model the fluctuation of the average clutter power, commonly referred to as speckle. The resulting form, although appearing cumbersome, readily allows for efficient and accurate computations of the probability of detection in clutter  相似文献   

19.
Time-frequency method for detecting an accelerating target in sea clutter   总被引:1,自引:0,他引:1  
The authors design a time-frequency (TF) method for use in high-frequency surface-wave radar (HFSWR) for detecting a small accelerating target in sea clutter. The clutter is modelled by pseudo targets moving with Bragg velocity towards and away from the radar. The design is based on the Wigner distribution (WD) defined by Chan (type-III WD, in our terminology) rather than the WD defined by Claasen and Mecklenbrauker (1980) (2times type-I WD, in our terminology). Like the type-I WD, the type-III WD also concentrates a chirp signal onto a straight line in the TF plane. The type-III WD has the following advantages: 1) Its range of unambiguously measurable frequencies (RUMF) is [-pi,pi] rad/s, whereas for the type-I WD the RUMF is [-pi/2,pi/2] rad/s. 2) It allows a target separated from the clutter by pi rad/s to be detected, whereas the type-I WD coalesces such a target with the clutter and thereby mask it. An ambiguity function (AF) was defined corresponding to the type-III WD and use it to derive a smoothed type-III WD that mitigates the clutter. The smoothed type-III WD method is applied to real radar data and shown to be superior to the conventional Fourier transform method. The advantages of the type-III WD over the type-I WD are also demonstrated. The design principles laid out in the paper can also be used to develop a TF method for use in air traffic control radar (ATCR) for detecting an accelerating target in land clutter  相似文献   

20.
We derive the optimum radar receiver to detect fluctuating and non-fluctuating targets against a disturbance which is modeled as a mixture of coherent K-distributed and Gaussian-distributed clutter. In addition, thermal noise, which is always present in the radar receiver, is considered. We discuss the implementation of the optimum coherent detector, which derives from the likelihood ratio test under the assumption of perfectly known disturbance statistics, and evaluate its performance via a numerical procedure, when possible, and via Monte Carlo simulation otherwise. Moreover, we compare the performance of the optimum detector with those of two detectors which are optimum for totally Gaussian and totally K-distributed clutter respectively, when they are fed with such a mixed disturbance. We conclude that, though the optimum detector has a larger computational cost, it provides sensibly better detection performance than the mismatched detectors in a number of operational situations. Thus, there is a need to derive suboptimum target detectors against the mixture of disturbances which trade-off the detection performance and the implementation complexity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号