共查询到20条相似文献,搜索用时 15 毫秒
1.
P.S. Babcock D.M. Auslander R.C. Spear 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1984,4(12):263-270
Reliability of closed life support systems will depend on their ability to continue supplying the crew's needs in the face of perturbations and equipment failures. These dynamic considerations interact with the basic static (equilibrium) design through the sizing of storages, the specification of excess capacities in processors, and the choice of system initial state (total mass in the system). This paper uses a very simple system flow model to examine the possibilities for system failures even when there is sufficient storage to buffer the immediate effects of the perturbation. Two control schemes are shown which have different dynamic consequences in response to component failures. 相似文献
2.
Considerations of design for life support systems. 总被引:1,自引:0,他引:1
Akira Ashida 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(7):1805-1809
During the design phase for construction of artificial ecosystems, the following considerations are important. (1) Influences on living things in the ecosystem, such as lifestyles and physiological functions caused by stresses due to environmental changes. The long stay in the artificial ecosystem has a possibility to lead to evolutional change in the living things. (2) The system operation method in trouble, which relates to maintainability. (3) The system metamorphosis according to new technologies. (4) Route minimization of material flow that leads to an optimum system layout. 相似文献
3.
Keiji Nitta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(1):63-68
New test bed facilities such as Bioplex and CEEF have been constructed to test the new advanced technologies for solving the various problems as follows, (1) how to develop air content stabilization technologies with gas balance between the generation and the absorption by living organisms, (2) how to solve the mismatching between the assimilation rate of autotrophic organisms and the respiration rate of heterotrophic organisms, (3) how to balance the speed of the waste decomposition with the absorption speed of nutrient components in the sequential plant cultivation, (4) how to develop new nutrient adjusting subsystems for each plant species, (5) how to compensate the denitrification during the waste decomposition and anaerobic microbes in the nutrient solution. 相似文献
4.
S I Bartsev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(7):1509-1516
High closure of matter recycling is an obvious requirement for long-term life support systems (LSS). Biological species are obligate components of the LSS since physical/chemical components are not able yet to provide food for crew. However including biological species into LSS is difficult due to specific stoichiometric configuration of their inputs and outputs. Formally the problem is to estimate the ability for given set of species to provide complete closure of LSS. Two possible models of metabolism organization can be considered: rigid and flexible ones. Stoichiometric analyses showed that the rigid metabolism case is not typical and takes place with very specific requirements. The flexible metabolic model can be applied to describing wide range of systems. Some formal indications of ability to provide complete closure and stationarity of LSS state are considered in the paper. These indications establish some constraints on the form of mathematical models intended to describe artificial and natural ecological systems. 相似文献
5.
N S Manukovsky V S Kovalev I G Rygalov VYeZolotukhin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1997,20(10):1827-1832
An experimental model of matter turnover in the biotic cycle: plants (plant biomass) --> mushrooms (residual substrate + mushroom fruit bodies) --> worms (biohumus) --> microorganisms (soillike substrate) --> plants is presented. The initial mass of soillike substrate was produced from wheat plants grown in a hydroponic system. Three cycles of matter turnover in the biotic cycle were carried out. Grain productivity on soillike substrate was 21.87 g/m2 day. The results obtained were used for designing a CES containing man, plants, soillike substrate, bioregeneration module and aquaculture. It was shown, that the circulating dry mass of the CES is 756 kg. The main part (88%) of the circulating mass accumulates in the soillike substrate and bioregeneration module. 相似文献
6.
C C Blackwell 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(1-2):167-170
A perspective of the process of obtaining performance robustness of space exploration life support systems is presented. Some useful definitions are made, some relevant issues are addressed, and a procedure for establishing performance robustness, so far as it now known, is explained. An example is given to illustrate the procedure. 相似文献
7.
V V Mezhevikin V A Okhonin S I Bartsev J I Gitelson 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1994,14(11):135-142
Different versions of manned closed ecosystems (CES) based on photosynthesis of unicellular and/or higher plants and chemosynthesis or bacteria are considered. Different versions of CES have been compared for applying them on Earth, Moon, Mars and Venus orbital stations, for Mars missions and planetary stations as well as to provide high-quality life in extreme conditions on the Earth. In microgravity [correction of mycrogravity] we recommend CES with unicellular organisms based on photosynthesis or chemosynthesis (depending of the availability of the light or electric energy). For the planetary stations with Moon gravity and higher CES with higher plants are recommended. Improvement of indoor air quality by CES biotechnology is considered. 相似文献
8.
L.A Somova N.S Pechurkin R.C Huttenbach 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1996,18(12):259-263
Every life support system has an associated microflora that is not essential to functioning of the system. At the same time, the confined space of a closed system increases the significance of the associated microflora causing closer contact between components and enhancing the intensity of exchange between them. For any life support system that is functioning normally, there exists an optimum between the effort necessary to maintain the system in a healthy state and the damage the introduction of alien microflora can cause. 相似文献
9.
Material balance and diet in bioregenerative life support systems: connection with coefficient of closure. 总被引:1,自引:0,他引:1
N S Manukovsky V S Kovalev L A Somova Yu L Gurevich M G Sadovsky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(9):1563-1569
Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in "BIOS-3" facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6-93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base variant ("BIOS-3"), and with increases in the coefficient of closure. It is shown that food requirements will be more fully satisfied by internal crop production with an increase in the coefficient of closure of the BLSS. Changes of massflow rates on an 'input-output' and inside BLSS are considered. Equations of synthesis and degradation of organic substances in BLSS were examined using a stoichiometric model. The paper shows that at incomplete closure of BLSS containing SLS there is a problem of nitrogen balancing. To compensate for the removal of nitrogen from the system in urine and feces, it is necessary to introduce food and a nitrogen-containing additive. 相似文献
10.
Aquatic food production modules in bioregenerative life support systems based on higher plants. 总被引:2,自引:0,他引:2
V Bluem F Paris 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(9):1513-1522
Most bioregenerative life support systems (BLSS) are based on gravitropic higher plants which exhibit growth and seed generation disturbances in microgravity. Even when used for a lunar or martian base the reduced gravity may induce a decreased productivity in comparison to Earth. Therefore, the implementation of aquatic biomass production modules in higher plant and/or hybrid BLSS may compensate for this and offer, in addition, the possibility to produce animal protein for human nutrition. It was shown on the SLS-89 and SLS-90 space shuttle missions with the C.E.B.A.S.-MINI MODULE that the edible non gravitropic rootless higher aquatic plant Ceratophyllum demeresum exhibits an undisturbed high biomass production rate in space and that the teleost fish species, Xiphophorus helleri, adapts rapidly to space conditions without loss of its normal reproductive functions. Based on these findings a series of ground-based aquatic food production systems were developed which are disposed for utilization in space. These are plant production bioreactors for the species mentioned above and another suitable candidate, the lemnacean (duckweed) species, Wolffia arrhiza. Moreover, combined intensive aquaculture systems with a closed food loop between herbivorous fishes and aquatic and land plants are being developed which may be suitable for integration into a BLSS of higher complexity. Grant numbers: WS50WB9319-3, IVA1216-00588. 相似文献
11.
John M. Gonzales Jr. 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
A significant amount of research has been invested into understanding the effects of including fish culture in bio-regenerative life support systems (BLSS) for long duration space habitation. While the benefits of fish culture as a sub-process for waste treatment and food production continue to be identified, other pressing issues arise that affect the overall equivalent system mass associated with fish culture in a BLSS. This paper is meant to provide insight into several issues affecting fish culture in a BLSS that will require attention in the future if fish meant for consumption are to be cultured in a BLSS. 相似文献
12.
K. Molders M. Quinet J. Decat B. Secco E. Dulière S. Pieters T. van der Kooij S. Lutts D. Van Der Straeten 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
As part of the ESA-funded MELiSSA program, Ghent University and the Université catholique de Louvain investigated the suitability, growth and development of four potato cultivars in hydroponic culture under controlled conditions with the aim to incorporate such cultivation system in an Environmental Control and Life Support System (ECLSS). Potato plants can fulfill three major functions in an ECLSS in space missions: (a) fixation of CO2 and production of O2, (b) production of tubers for human nutrition and (c) production of clean water after condensation of the water vapor released from the plants by transpiration. Four cultivars (Annabelle, Bintje, Desiree and Innovator) were selected and grown hydroponically in nutrient film technique (NFT) gullies in a growth chamber under controlled conditions. The plant growth parameters, tuber harvest parameters and results of tuber nutritional analysis of the four cultivars were compared. The four potato cultivars grew well and all produced tubers. The growth period lasted 127 days for all cultivars except for Desiree which needed 145 days. Annabelle (1.45 kg/m2) and Bintje (1.355 kg/m2) were the best performing of the four cultivars. They also produced two times more tubers than Desiree and Innovator. Innovator produced the biggest tubers (20.95 g/tuber) and Desiree the smallest (7.67 g/tuber). The size of Annabelle and Bintje potatoes were intermediate. Bintje plants produced the highest total biomass in term of DW. The highest non-edible biomass was produced by Desiree, which showed both the highest shoot and root DW. The manual length and width measurements were also used to predict the total tuber mass. The energy values of the tubers remained in the range of the 2010 USDA and Souci-Fachmann-Kraut food composition databases. The amount of Ca determined was slightly reduced compared to the USDA value, but close to the Souci-Fachmann-Kraut value. The concentration of Cu, Zn and P were high compared to both databases. 相似文献
13.
J R Cronin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(2):59-64
Carbonaceous chondrites, a class of primitive meteorite, have long been known to contain their complement of carbon largely in the form of organic, i.e., hydrocarbon-related, matter. Both discrete organic compounds and an insoluble, macromolecular material are present. Several characteristics of these materials provide evidence for their abiotic origin. The principal formation hypotheses have invoked chemistry occurring either in the solar nebula or on the parent body. However, recent stable isotope analyses of the meteorite carboxylic acids and amino acids indicate that they may be related to interstellar cloud compounds. These results suggest a formation scheme in which interstellar compounds were incorporated into the parent body and subsequently converted to the present suite of meteorite organics by the hydrothermal process believed to have formed the clay minerals of the meteorite matrix. 相似文献
14.
A A Tikhomirov S A Ushakova 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(9):1535-1539
Our experiments examined enhancing tolerance of the photosynthesizing component to possible deviations in thermal or illumination conditions inside a bioregenerative life support system (BLSS). In the event of one parameter getting beyond its optimum, the values of other parameters may ensure minimal damage to the plant component during the period of environmental stress. With wheat plants (one of key elements of the plant component) as an example the work considers whether it is possible to enhance thermal tolerance by varying light intensity. Increase of air temperature to 35 degrees C or 45 degrees C with light intensity of 60 W/m2 PAR has been shown to substantially inhibit the photosynthesis processes; at 150 W/m2 PAR photosynthesis decreases from 50% to 100%, respectively; when light intensity is increased to 240 W/m2 PAR photosynthesis increased more than 70% at 35 degrees C and decreased at 45 degrees C by only 20%. Thus, light intensity can be increased to avoid or decrease the inhibiting effect of high temperatures. On the other hand, tolerance of wheat plants to prolonged absence of light can be substantially enhanced by decreasing during this period air temperature to temperatures close to 0 degrees C. 相似文献
15.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013,52(3):536-546
As part of the ESA-funded MELiSSA program, the suitability, the growth and the development of four bread wheat cultivars were investigated in hydroponic culture with the aim to incorporate such a cultivation system in an Environmental Control and Life Support System (ECLSS). Wheat plants can fulfill three major functions in space: (a) fixation of CO2 and production of O2, (b) production of grains for human nutrition and (c) production of cleaned water after condensation of the water vapor released from the plants by transpiration. Four spring wheat cultivars (Aletsch, Fiorina, Greina and CH Rubli) were grown hydroponically and compared with respect to growth and grain maturation properties. The height of the plants, the culture duration from germination to harvest, the quantity of water used, the number of fertile and non-fertile tillers as well as the quantity and quality of the grains harvested were considered. Mature grains could be harvested after around 160 days depending on the varieties. It became evident that the nutrient supply is crucial in this context and strongly affects leaf senescence and grain maturation. After a first experiment, the culture conditions were improved for the second experiment (stepwise decrease of EC after flowering, pH adjusted twice a week, less plants per m2) leading to a more favorable harvest (higher grain yield and harvest index). Considerably less green tillers without mature grains were present at harvest time in experiment 2 than in experiment 1. The harvest index for dry matter (including roots) ranged from 0.13 to 0.35 in experiment 1 and from 0.23 to 0.41 in experiment 2 with modified culture conditions. The thousand-grain weight for the four varieties ranged from 30.4 to 36.7 g in experiment 1 and from 33.2 to 39.1 g in experiment 2, while market samples were in the range of 39.4–46.9 g. Calcium levels in grains of the hydroponically grown wheat were similar to those from field-grown wheat, while potassium, magnesium, phosphorus, iron, zinc, copper, manganese and nickel levels tended to be higher in the grains of experimental plants. It remains a challenge for future experiments to further adapt the nutrient supply in order to improve senescence of vegetative plant parts, harvest index and the composition of bread wheat grains. 相似文献
16.
Utilization of sweet potatoes in controlled ecological life support systems (CELSS). 总被引:2,自引:0,他引:2
W A Hill P A Loretan C K Bonsi C E Morris J Y Lu C Ogbuehi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(8):29-41
A number of studies have selected the sweet potato as a potentially important crop for CELSS. Most hydroponic studies of sweet potatoes have been short term (<80 days). Full term (90 to 150 days) studies of sweet potatoes in hydroponic systems were needed to understand the physiology of storage root enlargement and to evaluate sweet potato production potential for CELSS. Early and late maturing sweet potato varieties were crown in hydroponic systems of different types--static with periodic replacement, flowing with and without recirculation, aggregate, and non-aggregate. In a flowing system with recirculation designed at Tuskegee University using the nutrient film technique (NFT), storage root yields as high as 1790 g were produced with an edible growth rate of up to 66 g m-2 d-1 and a harvest index as high as 89% under greenhouse conditions. Preliminary experiments indicated high yields can be obtained in controlled environmental chambers. Significant cultivar differences were found in all systems studied. Nutritive composition of storage roots and foliage were similar to field-grown plants. The results indicate great potential for sweet potato in CELSS. 相似文献
17.
Franz Kenn 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
Due to high resupply costs, especially for long-duration stays in space habitats beyond low earth orbit, future manned space missions will require life support systems (LSS) with a high degree of regenerativity. Possible ways to overcome the waste of resources and to save on resupply mass are therefore of major interest for the development of next generation environmental control and life support systems. 相似文献
18.
R D MacElroy D Wang 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1989,9(8):75-84
Research and technology development issues centering on the recycling of materials within a bioregenerative life support system are reviewed. The importance of recovering waste materials for subsequent use is emphasized. Such material reclamation will substantially decrease the energy penalty paid for bioregenerative life support systems, and can potentially decrease the size of the system and its power demands by a significant amount. Reclamation of fixed nitrogen and the sugars in cellulosic materials is discussed. 相似文献
19.
F Gòdia J Albiol J Pérez N Creus F Cabello A Montràs A Masot Ch Lasseur 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2004,34(7):1483-1493
The different advances in the Micro Ecological Life Support System Alternative project (MELISSA), fostered and coordinated by the European Space Agency, as well as in other associated technologies, are integrated and demonstrated in the MELISSA Pilot Plant laboratory. During the first period of operation, the definition of the different compartments at an individual basis has been achieved, and the complete facility is being re-designed to face a new period of integration of all these compartments. The final objective is to demonstrate the potentiality of biological systems such as MELISSA as life support systems. The facility will also serve as a test bed to study the robustness and stability of the continuous operation of a complex biological system. This includes testing of the associated instrumentation and control for a safe operation, characterization of the chemical and microbial safety of the system, as well as tracking the genetic stability of the microbial strains used. The new period is envisaged as a contribution to the further development of more complete biological life support systems for long-term manned missions, that should be better defined from the knowledge to be gained from this integration phase. This contribution summarizes the current status of the Pilot Plant and the planned steps for the new period. 相似文献
20.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,40(11):1735-1740
Creation of optimal sanitary–hygienic conditions is a prerequisite for good health and performance of crews on extended space missions. There is a rich assortment of associated means, methods and equipment developed and experimentally tested in orbital flights. However, over a one-year period a crew of three uses up about 800 kg of ground-supplied wet wipes and towels for personal needs. The degree of closure of life support systems for long-duration orbital flights should be maximized, particularly for interplanetary missions, which exclude any possibility of re-supply. Washing with regenerated water is the ultimate sanitary–hygienic goal. That is why it is so important to design devices for crew bathing during long-term space missions. Investigations showed that regeneration of wash water (WW) using membrane processes (reverse osmosis, nanofiltration etc.), unlike sorption, would not require much additional expendables. A two-stage membrane recovery unit eliminated >85% of permeate from real WW with organic and inorganic selectivity of 82–95%. The two-stage WW recovery unit was tested with artificial and real WW containing detergents available for space crews. Investigations into the ways of doing laundry and drying along with which detergents will be the best fit for space flight are also planned. Testing of a technology for water extraction from used textiles using a conventional period of contact of 1 s or more, showed that the humidity of the outgoing air flow neared 100%. Issues related to designing the next generation of space life support systems should consider the benefits of integrating new sanitary–hygienic technologies, equipment, and methods. 相似文献