首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Kajita  T. 《Space Science Reviews》2002,100(1-4):221-233
Present understanding of neutrino mass and mixing are discussed based on recent neutrino experiments, including solar, atmospheric, reactor and long baseline accelerator neutrino experiments. Especially, the results from the Super-Kamiokande experiment are discussed in detail.  相似文献   

3.
4.
为保证极轴式望远镜轴系测量精度,需要对其系统误差进行修正。在分析极轴式望远镜测角工作原理的基础上,提出了利用欧拉变换方法推导其系统误差修正模型。采用该方法详细推导出望远镜的测角元件误差、极轴误差、纬轴误差、视轴误差等轴系误差模型以及镜筒下沉误差模型,并给出了极轴式望远镜的系统误差修正模型。该误差修正模型与采用球面三角学的方法推导出来的系统误差修正模型完全一致,欧拉变换方法由于只涉及到坐标的旋转与矩阵的计算,更容易理解和掌握。  相似文献   

5.
A family of two-mirror correctors has been devised in a more advanced form than that obtained by Paul in 1935. These correctors can be used in combination with any paraboloidal telescope of even the largest size and will yield a greatly enlarged photographic field without the need for refracting elements of any kind. Such correctors will be of particular use in the ultraviolet, and for space-borne telescopes into the far ultraviolet, with performance limited only by diffraction over angular fields appreciably larger than available heretofore.  相似文献   

6.
We review and clarify the assumptions of our basic model for neutrino production in the cores of quasars, as well as those modifications to the model made subsequently by other workers. We also present a revised estimate of the neutrino background flux and spectrum obtained using more recent empirical studies of quasars and their evolution. We compare our results with other theoretical calculations and experimental upper limits on the AGN neutrino background flux. We also estimate possible neutrino fluxes from the jets of blazars detected recently by the EGRET experiment on the Compton Gamma Ray Observatory. We discuss the theoretical implications of these estimates.NAS-NRC Senior Research Associate, on leave from the Physics Department, University of Utah  相似文献   

7.
8.
为提高极轴式望远镜的测量精度,借鉴地平式望远镜的系统误差修正方法,推导了基于轴系和球谐函数的极轴式望远镜系统误差修正模型,在分析2种误差修正模型误差项不足的基础上,探索性地提出了一种新的误差修正模型——改进球谐函数系统误差修正模型。对实际测星数据进行误差修正的结果表明,进行改进球谐函数系统误差修正后,精度在时角和赤纬方向上比其他方法提高了50%。  相似文献   

9.
Dean  A.J.  Bird  A.J.  Diallo  N.  Ferguson  C.  Lockley  J.J.  Shaw  S.E.  Westmore  M.J.  Willis  D.R. 《Space Science Reviews》2003,105(1-2):285-376
Gamma ray photons interact with matter through a wide variety of complex physical mechanisms, which can be readily imitated by other particle processes. Unfortunately since γ-ray telescopes are obliged to function in a hostile radiation environment above the earth's atmosphere the net result is low signal to noise observations and a corresponding loss in sensitivity. Consequently, understanding the generation of the systematic background noise is crucial if the full performance of a γ-ray instrument is to be realised. In the past it was not possible to reliably estimate the background levels in a fully quantitative manner; semi-empirical methods were employed. Although the basic underlying sources of the background noise were reasonably well understood, and the spectral intensities of the associated particles were reasonably well known, it was not possible to associate resultant noise components with the input source of that noise with any real degree of accuracy. The advent of sophisticated and accurate computer programmes capable of dependably representing the requisite particle physics processes and interactions coupled with the advances made in the context of high power/low cost computers has revolutionised the situation. The so-called ‘mass modelling’ technique is a truly physics-based approach, which takes the input particle spectra of the local radiation environment together with a computer representation of the mechanical structure and chemical composition of the instrumentation and associated spacecraft to trace the trajectories and interactions of all the incident particles throughout the system. All energy deposits from the various interactions and likewise those from the prompt and delayed secondary products are also accurately recorded. Subsequent energy discriminators and time coincidences can be applied to the event arrays with additional software to simulate on-board electronics systems. Internal spectral counting rates may be readily derived and analysed in terms of a wide variety of desired purposes. The impact of an accurate physics-based mass modelling technique has been to expand application of the procedure to effectively all the main aspects of a space γ-ray astronomy mission: instrument design; internal counting rates and spectral sensitivity estimates; optimisation of the design of the on-board processing electronics; operational planning and mission optimisation; estimation of radiation damage and its limitation; calibration planning and interpretation; the production of accurate instrumental response matrices; data analysis software; normalisation of astronomical results across instrument and instrumental degradation boundaries; and data archiving. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
11.
随着空间目标与碎片数量的激增,传统的基于目标跟踪的空间目标光电监视手段已不能满足需求,近年出现了面向空域的空间目标巡天观测。针对空间目标巡天观测的特点,同时考虑空间目标观测的目标个数和数据量,提出了一种空间目标巡天观测策略,并建立了相应的空间目标光电巡天优化数学模型。模型中通过0-1变量的使用,实现了目标函数和约束条件的线性化,十分有利于大规模问题的求解,能够更好地满足实际需求。仿真计算表明:策略简单,易于实现,并且有很好的效果;通过优化,只需要少量望远镜即能实现大批量空间目标的监视,并保持一定的观测数据量,为空间目标光电监视策略提供了新的思路。  相似文献   

12.
Several advanced capacitor designs that might be used in high average power space applications are described. Each type is fundamentally limited by breakdown phenomena. All are intrinsically limited to maximum fields on the order of 1000 MV/m. None of these units has been space rated for energy storage applications. Several problems that must be solved before use in space are presented as well as the current state of the art and estimates of developmental potential  相似文献   

13.
Summary On May 8, 1980, we conducted a 90 minute observation on hard X-ray emission (15-200 keV) from Her X-1, using a large area ( 1500 cm2), low background balloon borne X-ray telescope. The energy resolution of the telescope was 17% FWHM at 60 keV. Her X-1 was at binary phase 0.0725 and 2.7 ± 0.5 days after turn on in the 35 day cycle.Average pulsation light curves were obtained by sorting data into 25 equal bins, according to pulse arrival time, modulo the 1.24 sec pulsation period. The width of the main pulse is energy dependent and in the 45–75 keV region about 30% smaller than in the range from 15 to 30 keV.The data have been analyzed by taking the Her X-1 pulse minus background spectrum, where the pulse count rate is defined in a pulse phase interval around the pulse maximum of the 1.24 sec period. The background spectrum was intermittently obtained by a chopping collimator system.A spectral feature is present in emission at an energy of 49.5 (+ 1.5, -3) keV and a FWHM of 18 (+ 6, -3) keV and in absorption at an energy of 29.5 (+ 1.7, -1.5) keV and a FWHM of 17.0 (+ 2.6, -2.8) keV. The intensity of this line feature in emission is (1.8 ± 0.4) photons/cm sec. The line excess in emission over the continuum (with kT = 6.75 (+ 0.2, -0.4) keV) is 7.  相似文献   

14.
A series of spectacular cosmic ray events which included two relativistic solar particle enhancements and three major Forbush decreases were registered by ground-based cosmic ray monitoring stations beginning 4 August, 1972. These were associated with four major proton flare events on the Sun and with large interplanetary magnetic field disturbances and high velocity shock waves. This review attempts to discuss and interpret the high energy cosmic ray phenomena observed during this period in the light of the known behaviour of low energy particulate flux, interplanetary plasma and field observations and other associated solar and terrestrial effects recorded during this period.The first Forbush decrease event FD-1 occurred in the early hours of 4 August, exhibiting very strong north-south and east-west anisotropies. Immediately following the onset of FD-1, the first ground level solar particle enhancement occurred. This event, which had its onset almost 6 h after the flare event on 4 August, had a very steep rigidity spectrum. The major Forbush event of the series which had its onset at 2200 UT on 4 August, exhibited extremely interesting and complex behaviour, the prominent features of which are a precursory increase prior to the onset (PI-1), a large decrease (FD-2), the largest observed to date, followed immediately by an abrupt square wave like enhancement (PI-2). Interplanetary space during this entire period was highly disturbed by the presence of large low energy particulate fluxes and shock waves, at least one of which had a velocity exceeding 2000 km s-1. Large north-south and east-west anisotropies existed throughout the event. Both FD-2 and PI-2 were characterized by almost the same rigidity spectrum, with a power law index of -1.2 ± 0.2, and a predominant anisotropy along the sunward direction. The square wave-like spike PI-2 during the recovery of FD-2 was associated with a similar abrupt change in low energy particle flux in space, as well as an abrupt decrease in the interplanetary magnetic field value from 50 to 10 .Based on the available particle, field and plasma observations, an unified model is presented to explain the Forbush event in terms of a transient modulating region associated with the passage of a narrow magnetic shock front. In this model, the reflection of particles from the approaching shock front account for the precursory increase PI-1. The main Forbush event is caused when the magnetic barrier at the shock front sweeps past the Earth. The square wave increase is due to the enhanced flux contained in the magnetic well just behind the shock front and bounded by magnetic discontinuities, which is explained as due to the transverse diffusion of particles into this region from the interplanetary space which have easy access to this region. In situ plasma, field and low energy particle observations are reviewed to support the model.Also Professor at Physical Research Laboratory, Ahmedabad 380009, India.  相似文献   

15.
Regenerative Fuel Cell System (RFCS) technology for energy storage has been a NASA power system concept for many years. Compared to battery-based energy storage systems, RFCS has received relatively little attention or resources for development because the energy density and electrical efficiency were not sufficiently attractive relative to advanced battery systems. Even today, RFCS remains at a very low technology readiness level (TRL of about 2 indicating feasibility has been demonstrated). Commercial development of the Proton Exchange Membrane (PEM) fuel cells for automobiles and other terrestrial applications and improvements in lightweight pressure vessel design to reduce weight and improve performance make possible a high energy density RFCS energy storage system. The results from this study of a lightweight RFCS energy storage system for a remotely piloted, solar-powered, high altitude aircraft indicate an energy density up to 790 wh/kg with electrical efficiency of 53.4% is attainable. Such an energy storage system would allow a solar-powered aircraft to carry hundreds of kilograms of payload and remain in flight indefinitely for use in atmospheric research, Earth observation, resource mapping, and telecommunications. Future developments in the areas of hydrogen and oxygen storage, pressure vessel design, higher temperature and higher pressure fuel cell operation, unitized regenerative fuel cells, and commercial development of fuel cell technology will improve both the energy density and electrical efficiency of the RFCS  相似文献   

16.
It is shown that spin-orbital interaction of neutrons with clusters (nuclei or bubbles) immersed in the neutron sea of the inner crust of a neutron star can intensify substantially the neutrino pair emission (with respect to the neutrino emission in the uniform nuclear matter) at temperatures typical for the neutrino cooling epoch of the star. The neutrino pair emissivity of sub-nuclear matter is calculated both for the case when clusters are at random positions and for the case when clusters are ordered in a lattice.  相似文献   

17.
High energy neutral atom (hena) imager for the IMAGE mission   总被引:1,自引:0,他引:1  
Mitchell  D.G.  Jaskulek  S.E.  Schlemm  C.E.  Keath  E.P.  Thompson  R.E.  Tossman  B.E.  Boldt  J.D.  Hayes  J.R.  Andrews  G.B.  Paschalidis  N.  Hamilton  D.C.  Lundgren  R.A.  Tums  E.O.  Wilson  P.  Voss  H.D.  Prentice  D.  Hsieh  K.C.  Curtis  C.C.  Powell  F.R. 《Space Science Reviews》2000,91(1-2):67-112
The IMAGE mission will be the first of its kind, designed to comprehensively image a variety of emissions from the Earth's magnetosphere, with sufficient time resolution to follow the dynamics associated with the development of magnetospheric storms. Energetic neutral atoms (ENA) emitted from the ring current during storms are one of the key emissions that will be imaged. This paper describes the characteristics of the High Energy Neutral Atom imager, HENA. Using pixelated solid state detectors, imaging microchannel plates, electron optics, and time of flight electronics, HENA is designed to return images of the ENA emitting regions of the inner magnetosphere with 2 minute time resolution, at angular resolution of 8 degrees or better above the energy of 50 keV/nucleon. HENA will also image separately the emissions in hydrogen, helium, and oxygen above 30 keV/nucleon. HENA will reject energetic ions below 200 keV/charge, allowing ENA images to be returned in the presence of ambient energetic ions. HENA images will reveal the distribution and the evolution of energetic ion distributions as they are injected into the ring current during geomagnetic storms, as they drift about the Earth on both open and closed drift paths, and as they decay through charge exchange to pre-storm levels. Substorm ion injections will also be imaged, as will the regions of low altitude, high latitude ion precipitation into the upper atmosphere.  相似文献   

18.
The cosmic ray flux observed with the Kiel Electron Telescope on board the ULYSSES spaceprobe varies with solar activity as well as with heliospheric position. Determination of the latitudinal gradients requires a careful analysis of the influences of the current sheet tilt angle, the number of major solar flares, interplanetary shocks and interaction regions evolving in the expanding solar wind. In this paper we concentrate on nuclei with rigidity above 1 GV. We discuss the effects of the variable solar activity in the declining phase of the present solar cycle and the variation with radial distance as a basis for separating latitudinal effects. We show that during this phase of the solar cycle modulation of GV nuclei is ordered by temporal evolution, radial distance and negligible latitudinal effects even at latitudes between 30° and 50° South.  相似文献   

19.
程龙  张方华  谢敏  王愈  邹花蕾 《航空学报》2018,39(10):322129-322129
越来越多的电力电子装置应用到多电飞机(MEA)电力系统中,导致MEA用电负荷功率呈现脉动特性,采用混合储能系统(HESS)平抑负荷功率脉动。为减少HESS重量,提出了一种高功率密度的优化配置方法。为建立负荷功率与储能介质之间的关系,提出了等效时间(ET)的概念,比较两者的ET常数作为储能系统类型选取的依据。进一步提出空间矢量法,采用能量型储能介质矢量和功率型储能介质矢量合成负荷功率,确定最优单体和截止频率,实现了HESS高功率密度配置。同时,从能量约束和功率约束两个方面进行HESS的容量的计算。最后,通过算例配置和仿真分析验证了本文所提方法的可行性和正确性。  相似文献   

20.
Following our previously proposed technique, we have used the recent -ray observations of Mkr421 to place theoretically significant constraints on the magnitude of the intergalactic infrared radiation field (IIRF). Our 2 upper limits are consistent with normal IR production by stars and dust in galaxies. They rule out exotic mechanisms proposed to produce a larger IIRF. Although they are still subject to revision and are unconfirmed, the data on the spectrum of Mkr421 hint at a possible absorption cutoff which could be produced by an IIRF of the magnitude expected from stellar emission and reprocessing in galaxies. Using models for the low energy intergalactic photon spectrum from microwave to ultraviolet energies, we calculate the opacity of intergalactic space to -rays as a function of energy and redshift. These calculations indicate that the GeV -ray burst recently observed by the CGRO EGRET detector originates at a redshift less than 1.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号