首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Greenberg  J. Mayo  Li  Aigen 《Space Science Reviews》1999,90(1-2):149-161
The chemical composition of comet nuclei derived from current data on interstellar dust ingredients and comet dust and coma molecules are shown to be substantially consistent with each other in both refractory and volatile components. When limited by relative cosmic abundances the water in comet nuclei is constrained to be close to 30% by mass and the refractory to volatile ratio is close to 1:1. The morphological structure of comet nuclei, as deduced from comet dust infrared continuum and spectral emission properties, is described by a fluffy (porous) aggregate of tenth micron silicate core-organic refractory mantle particle on which outer mantles of predominantly H2O ices contain embedded carbonaceous and polycyclic aromatic hydrocarbon (PAH) type particles of size in the of 1 - 10nm range. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
The Deep Impact mission revealed many properties of comet Tempel 1, a typical comet from the Jupiter family in so far as any comet can be considered typical. In addition to the properties revealed by the impact itself, numerous properties were also discovered from observations prior to the impact just because they were the types of observations that had never been made before. The impact showed that the cometary nucleus was very weak at scales from the impactor diameter (~1 m) to the crater diameter (~100 m) and suggested that the strength was low at much smaller scales as well. The impact also showed that the cometary nucleus is extremely porous and that the ice was close to the surface but below a devolatilized layer with thickness of order the impactor diameter. The ambient observations showed a huge range of topography, implying ubiquitous layering on many spatial scales, frequent (more than once a week) natural outbursts, many of them correlated with rotational phase, a nuclear surface with many features that are best interpreted as impact craters, and clear chemical heterogeneity in the outgassing from the nucleus.  相似文献   

3.
The Rosetta Mission: Flying Towards the Origin of the Solar System   总被引:1,自引:0,他引:1  
The ROSETTA Mission, the Planetary Cornerstone Mission in the European Space Agency’s long-term programme Horizon 2000, will rendezvous in 2014 with comet 67P/Churyumov-Gerasimenko close to its aphelion and will study the physical and chemical properties of the nucleus, the evolution of the coma during the comet’s approach to the Sun, and the development of the interaction region of the solar wind and the comet, for more than one year until it reaches perihelion. In addition to the investigations performed by the scientific instruments on board the orbiter, the ROSETTA lander PHILAE will be deployed onto the surface of the nucleus. On its way to comet 67P/Churyumov-Gerasimenko, ROSETTA will fly by and study the two asteroids 2867 Steins and 21 Lutetia.  相似文献   

4.
SESAME is an instrument complex built in international co-operation and carried by the Rosetta lander Philae intended to land on comet 67P/Churyumov-Gerasimenko in 2014. The main goals of this instrument suite are to measure mechanical and electrical properties of the cometary surface and the shallow subsurface as well as of the particles emitted from the cometary surface. Most of the sensors are mounted within the six soles of the landing gear feet in order to provide good contact with or proximity to the cometary surface. The measuring principles, instrument designs, technical layout, operational concepts and the results from the first in-flight measurements are described. We conclude with comments on the consequences of the last minute change of the target comet and how to improve and to preserve the knowledge during the long-duration Rosetta mission.  相似文献   

5.
In situ observations of comet Halley yielded information on the nucleus and its environment. These measurements are related to properties of and processes at the nucleus by theoretical modelling and by simulation experiments in the laboratory. The objective of the KOSI (Kometensimulation) experiments is to study in detail processes which occur near the surface of ice-dust mixtures under irradiation by light, like heat transport into the sample, chemical fractionation of sample material, emission of gases, and others. The KOSI experiments are carried out at the large space simulation chamber in Köln. By providing an in-depth understanding of potential cometary processes the results from the KOSI experiments are relevant to any comet nucleus sample return mission.  相似文献   

6.
MUPUS, the multi purpose sensor package onboard the Rosetta lander Philae, will measure the energy balance and the physical parameters in the near-surface layers – up to about 30 cm depth- of the nucleus of Rosetta’s target comet Churyumov-Gerasimenko. Moreover it will monitor changes in these parameters over time as the comet approaches the sun. Among the parameters studied are the density, the porosity, cohesion, the thermal diffusivity and conductivity, and temperature. The data should increase our knowledge of how comets work, and how the coma gases form. The data may also be used to constrain the microstructure of the nucleus material. Changes with time of physical properties will reveal timescales and possibly the nature of processes that modify the material close to the surface. Thereby, the data will indicate how pristine cometary matter sampled and analysed by other experiments on Philae really is.  相似文献   

7.
8.
Deep Impact Mission Design   总被引:1,自引:0,他引:1  
The Deep Impact mission is designed to provide the first opportunity to probe below the surface of a comet nucleus by a high-speed impact. This requires finding a suitable comet with launch and encounter conditions that allow a meaningful scientific experiment. The overall design requires the consideration of many factors ranging from environmental characteristics of the comet (nucleus size, dust levels, etc.), to launch dates fitting within the NASA Discovery program opportunities, to launch vehicle capability for a large impactor, to the observational conditions for the two approaching spacecraft and for telescopes on Earth.  相似文献   

9.
10.
The plasma environment of comet 67P/Churyumov-Gerasimenko, the Rosetta mission target comet, is explored over a range of heliocentric distances throughout the mission: 3.25 AU (Rosetta instruments on), 2.7 AU (Lander down), 2.0 AU, and 1.3 AU (perihelion). Because of the large range of gas production rates, we have used both a fluid-based magnetohydrodynamic (MHD) model as well as a semi-kinetic hybrid particle model to study the plasma distribution. We describe the variation in plasma environs over the mission as well as the differences between the two modeling approaches under different conditions. In addition, we present results from a field aligned, two-stream transport electron model of the suprathermal electron flux when the comet is near perihelion.  相似文献   

11.
The ISSI workshop on “Origin and evolution of comet nuclei” had the goal to put together recent scientific findings concerning the “life” of a comet from the formation of the material in a dark molecular cloud to the accretion in the early solar system, from cometesimals to comet nuclei which were shaped and altered by cosmic rays, by radioisotopic heating, to their sublimation in the inner solar system. Astronomers, space researchers, modelers and laboratory experimentalists tried to draw the coherent picture. However, it became clear that there are still a lot of open questions, findings which seem to contradict each other, missing laboratory data, and experimental biases not taken into account. The Rosetta mission will make a big step forward in cometary science, but it will almost certainly not be able to resolve all questions. The main outcome of this workshop was the fact that comets are much more diverse than commonly thought and they are not only different from comet to comet but may consist of morphologically and chemically inhomogeneous cometesimals which may even have different places of origin.  相似文献   

12.
Dust is an important constituent of cometary emission; its analysis is one of the major objectives of ESA’s Rosetta mission to comet 67P/Churyumov-Gerasimenko (C–G). Several instruments aboard Rosetta are dedicated to studying various aspects of dust in the cometary coma, all of which require a certain level of exposure to dust to achieve their goals. At the same time, impacts of dust particles can constitute a hazard to the spacecraft. To conciliate the demands of dust collection instruments and spacecraft safety, it is desirable to assess the dust environment in the coma even before the arrival of Rosetta. We describe the present status of modelling the dust coma of 67P/C–G and predict the speed and flux of dust in the coma, the dust fluence on a spacecraft along sample trajectories, and the radiation environment in the coma. The model will need to be refined when more details of the coma are revealed by observations. An overview of astronomical observations of 67P/C–G is given, because model parameters are derived from this data if possible. For quantities not yet measured for 67P/C–G, we use values obtained for other comets, e.g. concerning the optical and compositional properties of the dust grains. One of the most important and most controversial parameters is the dust mass distribution. We summarise the mass distribution functions derived from the in-situ measurements at comet 1P/Halley in 1986. For 67P/C–G, constraining the mass distribution is currently only possible by the analysis of astronomical images. We find that both the dust mass distribution and the time dependence of the dust production rate of 67P/C–G are those of a fairly typical comet.  相似文献   

13.
The Deep Impact mission’s Education and Public Outreach (E/PO) program brings the principles of physics relating to the properties of matter, motions and forces and transfer of energy to school-aged and public audiences. Materials and information on the project web site convey the excitement of the mission, the principles of the process of scientific inquiry and science in a personal and social perspective. Members of the E/PO team and project scientists and engineers, share their experiences in public presentations and via interviews on the web. Programs and opportunities to observe the comet before, during and after impact contribute scientific data to the mission and engage audiences in the mission, which is truly an experiment.  相似文献   

14.
It is first argued that, when comet sampled are returned, they should be distributed to individual laboratories for analysis in the way that lunar samples, meteorites, and interplanetary dust particles have been studied in the past. The intellectual ferment engendered by recent discoveries should ensure the viability of groups working in extraterrestrial material research into the indefinite future. Many of the recent discoveries have resulted from application of increasingly sophisticated methods of microanalysis. #the interplay between technological developments and scientific work is underscored and it is argued that increased technical support for extraterrestrial material research should lead to instrumental developments that could have widespread practical applications.A brief review of certain potentially relevant technical developments in other fields is given and it is suggested that microanalytic measurements of extraterrestrial samples at the atom-counting limit appear promising for the future. The special problems raised by the necessity for cryogenic examination of comet samples are briefly discussed and it is concluded that the lack of expertise in this area is a current weakness in the ability of the extraterrestrial material community to handle comet samples. Computer tomography scan images of a dirty snowball are presented to illustrate the importance of developing new methods for comet sample analysis.  相似文献   

15.
The Alpha Particle X-Ray Spectrometer (APXS) is a small instrument to determine the elemental composition of a given sample. For the ESA Rosetta mission, the periodical comet 67P/Churyumov-Gerasimenko was selected as the target comet, where the lander PHILAE (after landing) will carry out in-situ observations. One of the instruments onboard is the APXS to make measurements on the landing site. The APXS science goal is to provide basic compositional data of the comet surface. As comets consist of a mixture of ice and dust, the dust component can be characterized and compared with known meteoritic compositions. Various element ratios can be used to evaluate whether chemical fractionations occurred in cometary material by comparing them with known chondritic material. To enable observations of the local environment, APXS measurements of several spots on the surface and one spot as function of temperature can be made. Repetitive measurements as function of heliocentric distance can elucidate thermal processes at work. By measuring samples that were obtained by drilling subsurface material can be analyzed. The accumulated APXS data can be used to shed light on state, evolution, and origin of 67P/Churyumov- Gerasimenko.  相似文献   

16.
The Grain Impact Analyser and Dust Accumulator (GIADA) onboard the ROSETTA mission to comet 67P/Churyumov–Gerasimenko is devoted to study the cometary dust environment. Thanks to the rendezvous configuration of the mission, GIADA will be plunged in the dust environment of the coma and will be able to explore dust flux evolution and grain dynamic properties with position and time. This will represent a unique opportunity to perform measurements on key parameters that no ground-based observation or fly-by mission is able to obtain and that no tail or coma model elaborated so far has been able to properly simulate. The coma and nucleus properties shall be, then, clarified with consequent improvement of models describing inner and outer coma evolution, but also of models about nucleus emission during different phases of its evolution. GIADA shall be capable to measure mass/size of single particles larger than about 15 μm together with momentum in the range 6.5 × 10−10 ÷ 4.0 × 10−4 kg m s−1 for velocities up to about 300 m s−1. For micron/submicron particles the cumulative mass shall be detected with sensitivity 10−10 g. These performances are suitable to provide a statistically relevant set of data about dust physical and dynamic properties in the dust environment expected for the target comet 67P/Churyumov–Gerasimenko. Pre-flight measurements and post-launch checkouts demonstrate that GIADA is behaving as expected according to the design specifications. The International GIADA Consortium (I, E, UK, F, D, USA).  相似文献   

17.
Prior to the selection of the comet 9P/Tempel 1 as the Deep Impact mission target, the comet was not well observed. From 1999 through the present there has been an intensive world-wide observing campaign designed to obtain mission critical information about the target nucleus, including the nucleus size, albedo, rotation rate, rotation state, phase function, and the development of the dust and gas coma. The specific observing schemes used to obtain this information and the resources needed are presented here. The Deep Impact mission is unique in that part of the mission observations will rely on an Earth-based (ground and orbital) suite of complementary observations of the comet just prior to impact and in the weeks following. While the impact should result in new cometary activity, the actual physical outcome is uncertain, and the Earth-based observations must allow for a wide range of post-impact phenomena. A world-wide coordinated effort for these observations is described.  相似文献   

18.
We describe the design, performance and scientific objectives of the NASA-funded ALICE instrument aboard the ESA Rosetta asteroid flyby/comet rendezvous mission. ALICE is a lightweight, low-power, and low-cost imaging spectrograph optimized for cometary far-ultraviolet (FUV) spectroscopy. It will be the first UV spectrograph to study a comet at close range. It is designed to obtain spatially-resolved spectra of Rosetta mission targets in the 700–2050 Å spectral band with a spectral resolution between 8 Å and 12 Å for extended sources that fill its ~0.05^ × 6.0^ field-of-view. ALICE employs an off-axis telescope feeding a 0.15-m normal incidence Rowland circle spectrograph with a toroidal concave holographic reflection grating. The microchannel plate detector utilizes dual solar-blind opaque photocathodes (KBr and CsI) and employs a two-dimensional delay-line readout array. The instrument is controlled by an internal microprocessor. During the prime Rosetta mission, ALICE will characterize comet 67P/Churyumov-Gerasimenko's coma, its nucleus, and nucleus/coma coupling; during cruise to the comet, ALICE will make observations of the mission's two asteroid flyby targets and of Mars, its moons, and of Earth's moon. ALICE has already successfully completed the in-flight commissioning phase and is operating well in flight. It has been characterized in flight with stellar flux calibrations, observations of the Moon during the first Earth fly-by, and observations of comet C/2002 T7 (LINEAR) in 2004 and comet 9P/Tempel 1 during the 2005 Deep Impact comet-collision observing campaign.  相似文献   

19.
Enzian  Achim 《Space Science Reviews》1999,90(1-2):131-139
The gas flux from a volatile icy-dust mixture is computed using a comet nucleus thermal model in order to study the evolution of CO outgassing during several apparitions from long-period Comet Hale-Bopp and short-period Comet Wirtanen. The comet model assumes a spherical, porous body containing a dust component, one major ice component (H2O), and one minor ice component of higher volatility (CO). The initial chemical composition is assumed to be homogeneous. The following processes are taken into account: heat and gas diffusion inside the rotating nucleus; release of outward diffusing gas from the comet nucleus; chemical differentiation by sublimation of volatile ices in the surface layers and recondensation of gas in deeper, cooler layers. A 2-D time dependent solution is obtained through the dependence of the boundary conditions on the local solar illumination as the nucleus rotates. The model for Comet Hale-Bopp was compared with observational measurements (Biver et al., 1999). The best agreement was obtained for a model with amorphous water ice and CO, assuming that a part of the latter is trapped by the water ice, another part is condensed as an independent ice phase. The model confirms that sublimation of CO ice at large heliocentric distance produces a gradual increase in the comet's activity as it approaches the Sun. Crystallization of amorphous water ice begins at 7 AU from the Sun, but no outbursts were found. Seasonal effects and thermal inertia of the nucleus material lead to larger CO outgassing rates as the comet recedes from the Sun. In the second part of this work the model was run with the orbital parameters of Comet Wirtanen. Unlike Comet Hale-Bopp, the predicted CO outgassing from Comet Wirtanen is almost constant throughout its orbit. Such behavior can be explained by a thermally evolved and chemically differentiated comet nucleus. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
The NASA Discovery Deep Impact mission involves a unique experiment designed to excavate pristine materials from below the surface of comet. In July 2005, the Deep Impact (DI) spacecraft, will release a 360 kg probe that will collide with comet 9P/Tempel 1. This collision will excavate pristine materials from depth and produce a crater whose size and appearance will provide fundamental insights into the nature and physical properties of the upper 20 to 40 m. Laboratory impact experiments performed at the NASA Ames Vertical Gun Range at NASA Ames Research Center were designed to assess the range of possible outcomes for a wide range of target types and impact angles. Although all experiments were performed under terrestrial gravity, key scaling relations and processes allow first-order extrapolations to Tempel 1. If gravity-scaling relations apply (weakly bonded particulate near-surface), the DI impact could create a crater 70 m to 140 m in diameter, depending on the scaling relation applied. Smaller than expected craters can be attributed either to the effect of strength limiting crater growth or to collapse of an unstable (deep) transient crater as a result of very high porosity and compressibility. Larger then expected craters could indicate unusually low density (< 0.3 g cm−3) or backpressures from expanding vapor. Consequently, final crater size or depth may not uniquely establish the physical nature of the upper 20 m of the comet. But the observed ejecta curtain angles and crater morphology will help resolve this ambiguity. Moreover, the intensity and decay of the impact “flash” as observed from Earth, space probes, or the accompanying DI flyby instruments should provide critical data that will further resolve ambiguities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号