首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phoenix--the first Mars Scout mission   总被引:2,自引:0,他引:2  
Shotwell R 《Acta Astronautica》2005,57(2-8):121-134
NASA has initiated the first of a new series of missions to augment the current Mars Program. In addition to the systematic series of planned, directed missions currently comprising the Mars Program plan, NASA has started a series of Mars Scout missions that are low cost, price fixed, Principal [correction of Principle] Investigator-led projects. These missions are intended to provide an avenue for rapid response to discoveries made as a result of the primary Mars missions, as well as allow more risky technologies and approaches to be applied in the investigation of Mars. The first in this new series is the Phoenix mission which was selected as part of a highly competitive process. Phoenix will use the Mars 2001 Lander that was discontinued in 2000 and apply a new set of science objectives and mission objectives and will validate this soft lander architecture for future applications. This paper will provide an overview of both the Program and the Project.  相似文献   

2.
There has been increased interest in the exploration of the Moon in recent years. Pin-point precision landing is highly desirable for future lunar missions. This paper is concerned with the design of the on-board data handling (OBDH) subsystem for the pin-point lunar lander of the Magnolia-1 project, funded by NASA. Four proposed on-board data handling architectures are outlined and compared in terms of power consumption, performance and reliability. Implementation results are presented, which are obtained from prototyping of the flight computer for the optimal OBDH architecture option on a Xilinx Virtex-5 Field Programmable Gate Array.  相似文献   

3.
In the past two years, NASA has begun to develop and implement plans for investigations on robotic Mars missions which are focused toward returning data critical for planning human missions to Mars. The Mars Surveyor Program 2001 Orbiter and Lander missions will mark the first time that experiments dedicated to preparation for human exploration will be carried out. Investigations on these missions and future missions range from characterization of the physical and chemical environment of Mars, to predicting the response of biology to the Mars environment. Planning for such missions must take into account existing data from previous Mars missions which were not necessarily focused on human exploration preparation. At the same time, plans for near term missions by the international community must be considered to avoid duplication of effort. This paper reviews data requirements for human exploration and applicability of existing data. It will also describe current plans for investigations and place them within the context of related international activities.  相似文献   

4.
Joseph N. Pelton   《Space Policy》2010,26(4):246-248
The Space Transportation System (STS), for better or worse, has dominated the US space program for some 30 years and is now an American icon. The Space Shuttle orbiters have flown over 120 missions and certainly accomplished some amazing feats, including the deployment of the International Space Station (ISS), the launch and double repair of the Hubble Telescope, a number of classified missions for the US defense establishment and the cementing of international cooperation in space. As the remaining Space Shuttle orbiters head toward various museums, it is timely to look at the STS program in terms of key US space policy decisions that have paralleled the Space Shuttle’s often troubled history. This article seeks, from both a historical and a policy perspective, to assess what might have been. While noting the major accomplishments of the STS, it also identifies what can best be characterized as major lost opportunities and flawed policy decisions that have had multi-billion dollar consequences. In this regard, the US Congress, the White House, and NASA leadership have all played a role. If there have been failings, they have not been by NASA alone, but the entire US space policy leadership.  相似文献   

5.
Rix CS  Sims MR  Cullen DC 《Astrobiology》2011,11(9):839-846
The proposed ExoMars mission, due to launch in 2018, aims to look for evidence of extant and extinct life in martian rocks and regolith. Previous attempts to detect organic molecules of biological or abiotic origin on Mars have been unsuccessful, which may be attributable to destruction of these molecules by perchlorate salts during pyrolysis sample extraction techniques. Organic molecules can also be extracted and measured with solvent-based systems. The ExoMars payload includes the Life Marker Chip (LMC) instrument, capable of detecting biomarker molecules of extant and extinct Earth-like life in liquid extracts of martian samples with an antibody microarray assay. The aim of the work reported here was to investigate whether the presence of perchlorate salts, at levels similar to those at the NASA Phoenix landing site, would compromise the LMC extraction and detection method. To test this, we implemented an LMC-representative sample extraction process with an LMC-representative antibody assay and used these to extract and analyze a model sample that consisted of a Mars analog sample matrix (JSC Mars-1) spiked with a representative organic molecular target (pyrene, an example of abiotic meteoritic infall targets) in the presence of perchlorate salts. We found no significant change in immunoassay function when using pyrene standards with added perchlorate salts. When model samples spiked with perchlorate salts were subjected to an LMC-representative liquid extraction, immunoassays functioned in a liquid extract and detected extracted pyrene. For the same model sample matrix without perchlorate salts, we observed anomalous assay signals that coincided with yellow coloration of the extracts. This unexpected observation is being studied further. This initial study indicates that the presence of perchlorate salts, at levels similar to those detected at the NASA Phoenix landing site, is unlikely to prevent the LMC from extracting and detecting organic molecules from martian samples.  相似文献   

6.
The Mars Sample Return Project.   总被引:1,自引:0,他引:1  
The Mars Sample Return (MSR) Project is underway. A 2003 mission to be launched on a Delta III Class vehicle and a 2005 mission launched on an Ariane 5 will culminate in carefully selected Mars samples arriving on Earth in 2008. NASA is the lead agency and will provide the Mars landed elements, namely, landers, rovers, and Mars ascent vehicles (MAVs). The French Space Agency CNES is the largest international partner and will provide for the joint NASA/CNES 2005 Mission the Ariane 5 launch and the Earth Return Mars Orbiter that will capture the sample canisters from the Mars parking orbits the MAVs place them in. The sample canisters will be returned to Earth aboard the CNES Orbiter in the Earth Entry Vehicles provided by NASA. Other national space agencies are also expected to participate in substantial roles. Italy is planning to provide a drill that will operate from the Landers to provide subsurface samples. Other experiments in addition to the MSR payload will also be carried on the Landers. This paper will present the current status of the design of the MSR missions and flight articles.  相似文献   

7.
The relative abundance of the protein amino acids has been previously investigated as a potential marker for biogenicity in meteoritic samples. However, these investigations were executed without a quantitative metric to evaluate distribution variations, and they did not account for the possibility of interdisciplinary systematic error arising from inter-laboratory differences in extraction and detection techniques. Principal component analysis (PCA), hierarchical cluster analysis (HCA), and stochastic probabilistic artificial neural networks (ANNs) were used to compare the distributions for nine protein amino acids previously reported for the Murchison carbonaceous chondrite, Mars meteorites (ALH84001, Nakhla, and EETA79001), prebiotic synthesis experiments, and terrestrial biota and sediments. These techniques allowed us (1) to identify a shift in terrestrial amino acid distributions secondary to diagenesis; (2) to detect differences in terrestrial distributions that may be systematic differences between extraction and analysis techniques in biological and geological laboratories; and (3) to determine that distributions in meteoritic samples appear more similar to prebiotic chemistry samples than they do to the terrestrial unaltered or diagenetic samples. Both diagenesis and putative interdisciplinary differences in analysis complicate interpretation of meteoritic amino acid distributions. We propose that the analysis of future samples from such diverse sources as meteoritic influx, sample return missions, and in situ exploration of Mars would be less ambiguous with adoption of standardized assay techniques, systematic inclusion of assay standards, and the use of a quantitative, probabilistic metric. We present here one such metric determined by sequential feature extraction and normalization (PCA), information-driven automated exploration of classification possibilities (HCA), and prediction of classification accuracy (ANNs).  相似文献   

8.
Marmann RA 《Acta Astronautica》1997,40(11):815-820
For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.  相似文献   

9.
《Acta Astronautica》2003,52(2-6):371-379
Under constrained budgets and rigid schedules, NASA and industry have greatly increased their utilization of small satellites to conduct low-cost planetary investigations. Recent failed small planetary science spacecraft such as Mars Polar Lander (MPL) and Mars Climate Orbiter (MCO), and impaired missions such as Mars Global Surveyor (MGS) have fueled the ongoing debate on whether NASA's “Faster, Better, Cheaper” (FBC) approach is working. Several noteworthy failures of earth-orbiting missions have occurred as well including Lewis and the Wide-field Infrared Experiment (WIRE). While recent studies have observed that FBC has resulted in lower costs and shorter development times, these benefits may have been achieved at the expense of lowering probability of success. One question remaining to be answered is when is a mission “too fast and too cheap” that it is prone to failure? This paper assesses NASA FBC missions in terms of a complexity index measured against development time and spacecraft cost. A comparison of relative failure rates of recent planetary and earth-orbiting missions are presented, and conclusions regarding dependence on system complexity are drawn.  相似文献   

10.
The new discipline of astrobiology addresses fundamental questions about life in the universe: "Where did we come from?" "Are we alone in the universe?" "What is our future beyond the Earth?" Developing capabilities in biotechnology, informatics, and space exploration provide new tools to address these old questions. The U.S. National Aeronautics and Space Administration (NASA) has encouraged this new discipline by organizing workshops and technical meetings, establishing a NASA Astrobiology Institute, providing research funds to individual investigators, ensuring that astrobiology goals are incorporated in NASA flight missions, and initiating a program of public outreach and education. Much of the initial effort by NASA and the research community was focused on determining the technical content of astrobiology. This paper discusses the initial answer to the question "What is astrobiology?" as described in the NASA Astrobiology Roadmap.  相似文献   

11.
The 2007 US National Research Council Decadal Survey for Earth Science and Applications from Space was the first consensus perspective produced by the US Earth Science community of the relative priorities among a sequence of 17 satellite missions over the course of the next decade. However, the Decadal Survey only captured the perspective of the science community, leading to questions about the inclusion of broader priorities from constituent communities and stakeholders. We present a stakeholder value network analysis for the NASA/NOAA Earth Observation Program. The analysis includes a rigorous articulation of the needs and objectives of 13 major stakeholders and a complete stakeholder value network with 190 individual “value flows” that capture the interactions between all the stakeholders. It produces a novel stakeholder map, graphically indicating the outputs most likely to create a lasting Earth Science program. The most important value loops and program outputs are used to derive a set of high-level program goals that suggest what NASA and NOAA should do, as well as how they should conduct business. The analysis concludes that international partnerships represent a strong potential partner for certain science missions with greater potential value delivery than currently-prioritized efforts with defense stakeholders and concludes that weather and land-use missions, in addition to climate missions, should be given highest priority; water, human health, and solid Earth missions should be given lower priority based on each science category's potential for delivering value to the entire stakeholder network.  相似文献   

12.
NASA’s Discovery, Explorer, and Mars Scout mission lines have demonstrated over the past 15 years that, with careful planning, flexible management techniques, and a commitment to cost control, small space science missions can be built and launched at a fraction of the price of strategic missions. Many credit management techniques such as co-location, early contracting for long-lead items, and a resistance to scope creep for this, but it is also important to examine what may be the most significant variable in small mission implementation: the roles and the relationship of the principal investigator, responsible to NASA for the success of the mission, and the project manager, responsible for delivering the mission to NASA. This paper reports on a series of 55 oral histories with principal investigators, project managers, co-investigators, system engineers, and senior management from nearly every competitively selected Discovery mission launched to date that discuss the definition and evolution of these roles and share revealing insights from the key players themselves. The paper will show that there are as many ways to define the principal investigator/project manager relationship as there are missions, and that the subtleties in the relationship often provide new management tools not practical in larger missions.  相似文献   

13.
During the past ten years the French laboratories working in the field of fluids and material sciences had access to regular, long-lasting manned missions onboard the Russian MIR Space Station. Beyond the French scientific program that was performed with the ALICE apparatus, a cooperative research program was developed with DLR, NASA and RSA. This cooperation was based on bartered agreements that included the joint utilization of the instruments onboard the MIR station (ALICE, TITUS furnace from DLR, vibration device from RKK Energia) and the funding of dedicated cartridges (DLR) or thermostats (DLR and NASA), as well as launch services (NASA) by the Cooperating Agencies. We present a review of this program with a particular emphasis on its scientific results and on the progress that has been achieved in science and applications. They covered a large field of condensed matter physics, from material sciences to near-critical and off-critical phase separation kinetics and near critical fluid hydrodynamics (thermoacoustic heat transport and vibrational convection). The high microgravity relevance of all these investigations naturally led to outstanding results that was published in the world's best scientific journals. The analysis of the latest experiments performed during the PEGASUS mission shows they will not be an exception to that evaluation. Off-critical phase separation with NASA, pressure-driven piston effect and equiaxed solidification with DLR, heat transport under calibrated vibrations with RKK Energia, all will be presented. The conclusion will stress the international character of this microgravity research program, the conditions of its success and what can be gained from it in the perspective of the space station utilization.  相似文献   

14.
Plans for interplanetary manned space missions imply significant risks arising from human's exposure to the hostile space environment. Thus the design of reliable protection systems against the ionizing cosmic radiation becomes one of the most relevant issues. In this paper the composition and magnitude of the atmospheric radiation on the planetary surface and for typical interplanetary transfer configurations have been analyzed. The investigation based on prior NASA and ESA mission results, using a manned mission to planet Mars as a case study. According to this, the time-dependent character of the consistency of cosmic radiation has been taken into account, which is justified by the interdependence of the radiation magnitude to the solar cycle. With regard to this paper it implies even solar particle events. The results have been compared to the protective character of different materials potentially usable as a habitat's structural shell and for interplanetary spacecrafts. The investigation aimed on particle energy degradation rates and reduction of secondary particle production. In this regard the physical process of absorbing effectiveness against particle radiation has been examined by analytical calculation and given scientific results, depending on thickness and molecular composition of the materials. The most suitable materials have been used for shield design proposals using different configurations, evaluating the use of aluminium, water tanks and polyethylene bricks.  相似文献   

15.
Mendell WW 《Acta Astronautica》2005,57(2-8):676-683
The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity--governmental, international, or commercial--that can responsibly carry on lunar development past the exploration phase.  相似文献   

16.
This article follows the story of Shuttle development, in the context of the history of the US space programme from Apollo to the Space Station. The Shuttle was chosen as one of a series of ‘space spectaculars’ and has proven to be prohibitively expensive and unreliable, practical only for a very limited number of specialized missions. The Space Station, too, cannot be economically supplied, even if the USA could afford to build it. The author concludes that NASA should cancel the Space Station and the replacement orbiter for Challenger, and engage on a major programme of launch vehicle development, independent of the US military. The aim should be a dramatic reduction of launch vehicle costs, making spaceflight practical, and a truly independent NASA which could restore the USA to space preeminence.  相似文献   

17.
《Acta Astronautica》1999,44(2-4):187-192
The Advanced Deep Space System Development Program is managed by the Jet Propulsion Laboratory for NASA and is also called X2000. X2000 is organized to create advanced flight and ground systems for the exploration of the outer planets and beyond; it has been created to develop the engineering elements of flight and ground systems. Payloads will be developed by another team. Each X2000 delivery gets its requirements from a set of planned missions, or “mission customers”.The X2000 First Delivery Project supports missions to the Sun (to 4 solar radii), Europa (looking for a liquid ocean), Mars (in support of several Mars missions including a sample return), a comet (including a sample return), and Pluto followed by a trip into the Kuiper belt. This set of missions leads to some outstanding requirements:
  • 1.1. Long-life (10–12 years)
  • 2.2. Total Ionizing Dose of 4 Mrad (for a Europa Orbiter)
  • 3.3. Average power consumption less than or equal to 150 Watts
  • 4.4. Autonomous operations that result in an extreme reduction in operations costs
This paper describes the X2000 first delivery and its technologies following a brief overview of the program.  相似文献   

18.
The Discovery Program is a rarity in the history of NASA solar system exploration: a reform program that has survived and continued to be influential. This article examines its emergence between 1989 and 1993, largely as the result of the intervention of two people: Stamatios “Tom” Krimigis of the Johns Hopkins University Applied Physics Laboratory (APL), and Wesley Huntress of NASA, who was Division Director of Solar System Exploration 1990–92 and the Associate Administrator for Space Science 1992–98. Krimigis drew on his leadership experience in the space physics community and his knowledge of its Explorer program to propose that it was possible to create new missions to the inner solar system for a fraction of the existing costs. He continued to push that idea for the next two years, but it took the influence of Huntress at NASA Headquarters to push it on to the agenda. Huntress explicitly decided to use APL to force change on the Jet Propulsion Laboratory and the planetary science community. He succeeded in moving the JPL Mars Pathfinder and APL Near Earth Asteroid Rendezvous (NEAR) mission proposals forward as the opening missions for Discovery. But it took Krimigis's political skill and access to Sen. Barbara Mikulski in 1993 to get the NEAR into the NASA budget, thereby likely ensuring that Discovery would not become another one-mission program.  相似文献   

19.
《Space Policy》2014,30(3):163-169
The planning of human spaceflight programmes is an exercise in careful rationing of a scarce and expensive resource. Current NASA plans are to develop the new capability for human-rated launch into space to replace the Space Transportation System (STS), more commonly known as the Space Shuttle, combined with a heavy lift capability, and followed by an eventual Mars mission. As an intermediate step towards Mars, NASA proposes to venture beyond Low Earth Orbit to cis-lunar space to visit a small asteroid which will be captured and moved to lunar orbit by a separate robotic mission. The rationale for this and how to garner support from the scientific community for such an asteroid mission are discussed. Key points that emerge are that a programme usually has greater legitimacy when it emerges from public debate, mostly via a Presidential Commission, a report by the National Research Council or a Decadal Review of science goals etc. Also, human spaceflight missions need to have support from a wide range of interested communities. Accordingly, an outline scientific case for a human visit to an asteroid is made. Further, it is argued here that the scientific interest in an asteroid mission needs to be included early in the planning stages, so that the appropriate capabilities (here the need for drilling cores and carrying equipment to, and returning samples from, the asteroid) can be included.  相似文献   

20.
The Small Explorer (SMEX) Project at NASA Goddard Space Flight Center (GSFC) has accumulated nearly a decade of experience building missions with the underlying philosophy of “Faster, Better, Cheaper” (FBC). Five satellites are now successfully operating on-orbit with only one serious instrument anomaly. Together this Project has accumulated 14.6 years of on-orbit experience without a spacecraft bus failure. Additionally, this project, under the Explorer Technology Infusion effort, has developed a protoflight version of a 21st Century FBC spacecraft bus that has just completed environmental qualification and has been selected at the base spacecraft for NASA's Triana mission. Design and production of these six high performance spacecraft, in just ten years time, has provided a unique base of experience from which to draw lessons learned. This paper will discuss the fundamental practices that have been used by the SMEX Project in achieving this record of success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号