首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
大迎角分离流场在等离子体控制下的特性研究   总被引:2,自引:0,他引:2  
设计了一种新型的大迎角主动流动控制方法。采用圆锥-圆柱组合体模拟飞行器前体,在靠近圆锥尖端处镶嵌了一对马蹄形单电极介质阻挡放电(single_Dielectric Barrier Discharge SDBD)等离子体激励器,通过风洞实验研究了等离子体激励器在不同状态下对大迎角模型前体的非对称气动载荷的控制作用。实验结果表明,通过控制等离子体激励器的开闭可以使得圆锥-圆柱组合体在大迎角下出现的侧力改变方向。还对通过调节单侧等离子体激励器的激励电压实现圆锥前体侧力系数在正负极值间连续变化的可能性进行了初步的实验探索。  相似文献   

2.
杜海  史志伟  耿玺  魏德宸 《航空学报》2012,33(10):1781-1790
在前期等离子体激励器基本流场特性研究的基础上,将等离子体激励器应用于微型飞行器(MAV)进行气动控制。当来流速度为9.1 m/s时,在微型飞行器机翼吸力面非对称布置不同的单介质阻挡放电(SDBD)等离子体激励器,通过对未施加激励的偏航、滚转力矩曲线和施加激励的偏航、滚转力矩曲线进行对比,发现横航向气动力距发生很大的改变,可以实现对横航向气动力矩的控制。在此基础上,采用图像测速(PIV)技术,对机翼背风面的流场进行研究,分析产生横航向控制力矩的流动机理。通过改变激励器的输入电压、占空比和调制频率,实现对横航向气动力矩的比例控制。  相似文献   

3.
在圆锥一圆柱组合体圆锥段的尖端区域布置一对单个介质阻挡放电激励器(SDBD),通过风洞实验对圆锥前体分离涡流场的等离子体控制特性进行了研究。实验风速5m/s,迎角为25°和30°,采用表面压力测量技术,并通过对压力的积分得到侧向力系数。实验结果表明:通过控制激励器的开、关可以改变圆锥两侧压力分布不对称的模式,从而使得侧向力的大小和方向发生改变。研究表明:等离子体激励器可以对非双稳态下的圆锥前体分离涡流场进行有效的控制。  相似文献   

4.
细长圆锥前体非对称涡流场的等离子体控制   总被引:3,自引:1,他引:2  
应用一对单介质阻挡放电(SDBD)等离子体激励器对顶角为20°的圆锥-圆柱组合体圆锥段分离涡流场进行了主动控制试验研究。试验在3.0m×1.6m低速低湍流度风洞中进行,迎角为45°,基于圆锥段底面直径的雷诺数为5×104。流动控制分为等离子体激励器关闭,左舷或右舷等离子体激励器分别开启,左右舷等离子体激励器占空循环3种模式。试验结果包括7个测量截面上的周向压力分布以及积分得到的截面当地力和力矩以及圆锥段力和力矩。研究结果表明,在圆锥头部尖端处迎风面两侧对称放置一对SDBD等离子体激励器,采用合适的激励器形式,并通过适当的电学参数,可以实现对细长旋成体侧向力和力矩的比例控制。通过对模型及等离子体激励器制作的改进,相对于前人相应的研究结果,本文中侧向力和力矩随占空比变化的线性度得到了改善。  相似文献   

5.
为了揭示介质阻挡放电等离子体激励流场作用效果对流动状态的依赖性,设计了由八组表面介质阻挡放电等离子体激励器(AC-SDBD)组成的阵列式激励器,在来流风速20~80?m/s工况下,研究了其对近壁区流动的影响.实验结果表明:施加激励的瞬间,阵列式AC-SDBD使得近壁区速度明显增大,随着时间的推移,近壁区速度有所下降,最...  相似文献   

6.
倪芳原  史志伟  杜海 《航空学报》2014,35(3):657-665
利用数值模拟,研究了纳秒脉冲介质阻挡放电(NS-DBD)等离子体激励器在圆柱高速流动控制中的应用。首先,研究了单电极NS-DBD等离子体激励器在静止空气中放电后的流场特性。研究表明在介质阻挡放电形成的等离子体区域,有局部能量快速注入,放电结束5 μs后在上极板后端点位置形成了一个局部温度高达900 K的热点,由此引发很强的压力扰动,形成以上极板后端点位置为中心,扩散速度约为声速的半圆形压缩波。在此基础上,通过数值模拟研究了NS-DBD等离子体激励器布置在直径为6 mm的圆柱上,来流马赫数为Ma=4.6时,对圆柱脱体激波的控制作用。研究表明介质阻挡放电形成的半圆形压缩波对于脱体激波有很强的干扰作用,激波距离增加了15.7%,激波强度也有相应的减弱,导致阻力减少了13%。  相似文献   

7.
S形进气道内的流动分离和二次流造成进气道出口压力损失和气流畸变较为严重,严重影响发动机的工作性能。为改善其流场特性,采用交流介质阻挡放电(Alternating current dielectric barrier discharge,AC-DBD)等离子体激励器主动控制进气道内的流场。在来流风速为10m/s,雷诺数ReD为1.35×105的工况下,探究了控制位置、布局形式对控制效果的作用规律,从流向和出口截面流场及压力分布出发,探究了主动控制的机理。结果表明,AC-DBD等离子体激励器能够提高壁面静压恢复系数,抑制流动分离并改善出口压力畸变。激励器控制位置在分离点附近最佳,且以诱导气流与来流平行的布局形式最优。在本实验范围内,出口静压系数提高了8.94%,出口稳态畸变指数降低了4.58%。其控制机理是DBD等离子体产生的诱导气流直接加速边界层运动,提高边界层抵抗逆压梯度的能力,从而抑制流动分离。同时,抑制二次流运动,降低压力畸变。  相似文献   

8.
在低速开口风洞中进行了等离子体激励器对NACA0015翼型流动分离控制的实验研究。采用PIV技术,对翼型绕流流场进行了测量,显示了施加等离子体激励后流场的变化。通过五分量天平对升力和阻力的测量,研究了激励电压和激励频率对翼型流动分离控制的规律。研究表明,低风速下在翼型前缘施加等离子体激励,能够有效地控制翼型流动分离,在来流为20m/s时,最大升力系数增加11%,失速迎角增加6°;在给定的流动状态下,激励电压和激励频率存在一个阈值,不同迎角下该阈值不同,迎角越大,分离越严重,对激励强度的要求也越高。  相似文献   

9.
等离子体激励器通过产生的等离子加速气流,可以实现对流动的控制。单级等离子体激励器由于受到等离子体放电的物理限制,其控制作用较小;为了提高等离子体流动控制的效果,关于多级等离子体激励器的研究得到发展。采用图像采集和粒子示踪测速系统(PIV),对传统多级等离子体激励器和多级双极性等离子体激励器的放电现象以及气流加速进行研究,并通过流场速度分布计算等离子体激励器对空气产生的推力和吸力。结果表明:随着电压的升高,传统多级等离子体激励器产生的推力和吸力会逐渐减弱;而多级双极性等离子体激励器产生的推力和吸力均呈逐渐增强的趋势。  相似文献   

10.
双极性等离子体激励器圆柱绕流控制实验研究   总被引:5,自引:0,他引:5  
在低速风洞中利用多级双极性等离子体激励器控制圆柱绕流的流动分离。实验风速U∞=10m/s,基于圆柱直径的雷诺数Re=2.8×10^4,在实验中将两组三级双极性等离子体激励器布置在圆柱模型肩部,利用粒子图像测速技术测量圆柱的尾流场。实验结果表明,采用定常和非定常激励均能抑制圆柱尾迹区,等离子体激励强度是影响激励器对圆柱绕流控制能力的重要因素;非定常脉冲激励耗电少,对流动控制能力强,效率明显高于定常激励,脉冲激励频率影响等离子体激励器对流动的控制能力。在实验风速为10m/s时,脉冲激励频率与圆柱涡脱落频率一致,流动控制效果较好。  相似文献   

11.
在西北工业大学低湍流度风洞中采用新型等离子激励器对NACA0015翼型进行表面流动分离点的控制实验。实验风速为20m/s和35m/s,迎角为0°~16°。并参照压力分布的实验结果对流动控制的效果进行了对比分析。结果表明:翼型表面的气流分离点只要落在等离子体激励所形成的激励区内,分离点都会被推迟到靠近等离子体激励器的最末端电极处。证明等离子激励器能够对翼型表面的分离点进行有效控制。  相似文献   

12.
NS-DBD激励控制非细长三角翼前缘涡仿真研究   总被引:2,自引:1,他引:1  
通过在三角翼前缘施加纳秒脉冲介质阻挡放电(NS-DBD)激励唯象学模型,进行了47°后掠角钝前缘三角翼流动控制的仿真。分析了不同迎角下升力和阻力系数的变化、流场结构的变化、以及激励诱导旋涡的演化过程。研究表明:施加无量纲激励频率F+=1.44的NS-DBD激励后,可明显提高三角翼失速前后的升力系数;同时阻力系数也有所增加,变化趋势与实验结果一致。激励在前缘分离剪切层处诱导产生流向涡,改变了前缘剪切层结构,使其向内卷吸;激励后时均流场形成了明显的负压峰值,前缘涡附着线外移,吸力面回流区减小。   相似文献   

13.
低速风洞的消声降噪改造设计研究   总被引:1,自引:0,他引:1  
对搬迁改造中的西北工业大学低(变)湍流度风洞进行了降噪设计研究。根据低速风洞噪声的机理及频率特性和该风洞的结构形式及风扇转速,采用两种降噪方法——主动降噪和被动降噪,对风洞进行降噪设计。主动降噪设计方法包括风扇动力段的气动、结构及振动的声学优化设计,被动降噪设计则采用在风洞洞体上安装微穿孔板,利用共振吸声技术进行降噪。结果表明:结合上述措施,55m/s风速下,相同测点和相同运行条件下,风洞噪声值下降约30%;76m/s最大设计风速下,风洞环境噪声被控制在78dB以下。  相似文献   

14.
Experimental investigation of aerodynamic control on a 35 swept flying wing by means of nanosecond dielectric barrier discharge(NS-DBD) plasma was carried out at subsonic flow speed of 20–40 m/s, corresponding to Reynolds number of 3.1 · 105–6.2 · 105. In control condition, the plasma actuator was installed symmetrically on the leading edge of the wing. Lift coefficient, drag coefficient, lift-to-drag ratio and pitching moment coefficient were tested with and without control for a range of angles of attack. The tested results indicate that an increase of 14.5% in maximum lift coefficient, a decrease of 34.2% in drag coefficient, an increase of 22.4% in maximum lift-to-drag ratio and an increase of 2 at stall angle of attack could be achieved compared with the baseline case. The effects of pulsed frequency, amplitude and chord Reynolds number were also investigated.And the results revealed that control efficiency demonstrated strong dependence on pulsed frequency. Moreover, the results of pitching moment coefficient indicated that the breakdown of leading edge vortices could be delayed by plasma actuator at low pulsed frequencies.  相似文献   

15.
利用DES方法对处于非对称流态下的细长旋成体进行了俯仰和偏航振荡的数值模拟,观察细长体气动特性尤其是背风面非对称分离涡的变化。计算结果表明在大迎角非对称多涡系情况下,固定频率和振幅的非定常运动可以改变流场结构和气动力,对细长体背风面流态有巨大的影响。俯仰振荡对非对称分离涡有明显的控制作用,抑制流场的非对称性,使分离涡趋于对称;而固定频率的偏航振荡则破坏背风面分离涡的稳定性,激励非对称背涡产生随时间变化的周期性脱落。所进行的非定常运动与细长体流场耦合作用研究在国内外研究尚少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号