首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2.
针对以往三轴磁传感器和加速度计组合测量高转速弹体姿态的不足,提出了一种新的姿态测量方案。该方案由两个磁传感器和两个加速度计以特定的方式安装及相应的解算方法组成。说明了传感器的布阵方式,并给出了弹体姿态解算的数学模型和解算方法。该解算方法包括Magsonde Window和最值之比的证明以及姿态角解算的理论分析,最后对此方案进行了建模与仿真。仿真结果表明,解算的姿态角与真实姿态角相符。  相似文献   

3.
介绍了国内首次在高速风洞中使用荧光压力传感器 (LPS)技术对飞机模型机翼表面压力场测量的初步结果。简述了LPS技术的应用原理、实验设备、实验方法和数据处理方法。为了分析比较 ,在用LPS技术测压的同时也用常规压力孔测压方法进行了机翼表面压力测量 ,并对二种测量方法得到的结果进行了简单分析。实验马赫数M =0 .4~ 1 .5 ,攻角α=0°~ 1 8°。  相似文献   

4.
介绍压力场测试中所采用的压电压力传感器的标定方法。压力场测试中所采用的传感器是一种以压电晶体做敏感元件的压力传感器,它可以将压力讯号直接转换成电荷输出,其输出量与被测量压力成正比。该传感器具有较大的测压范围、较好的线性、快速的上升时间、高的压力-电荷灵敏度和较小的几何尺寸。给出了压电压力传感器的实验室标定方法和野外使用环境条件下的现场标定方法,并进行了对比研究。  相似文献   

5.
本文分析了硅压阻式压力传感器输出特性与硅电阻元件温度之间的关系。据此,提出了用μP对此类传感器进行温度及非线性等误差补偿的有效方法,以保证采用此类传感器的数字压力表在-20~50℃温度范围内误差≤±0.10%FS,在15~25℃范围内误差≤±0.05%FS。 本文还介绍了带μP数字压力表的硬件和软件,从而较好地解决了在较大温度范围内高精度压力测量的课题。  相似文献   

6.
本文系统地阐述了用于高压油路动压测量的夹持式压力传感器的实现方法,并通过实践证明了这种方法的可行性。文中还给出了该装置用于检测柴油机高压油路压力信号的压力波形。  相似文献   

7.
国际航空航天模拟测试技术会议是风洞测试技术专业会议,许多风洞测试新技术、新思想都首先在该会作报导,本文简要介绍了在温度、压力测量方面的一些新动向及一些测试仪器的改进和应用。  相似文献   

8.
由四个弹性梁和一个刚性中心膜构成的梁-膜结构,具有平面应力集中效应,与一般的结构相比,这种膜片在受到微压时即产生较大的应力集中,使传感器在测量微压时有较高的灵敏度,它的特别的结构能解决一般结构膜片在很薄时由膜应力和弯曲应力产生的严重的非线性.介绍的这种双面腐蚀形成的梁-膜结构的硅压阻式微压传感器的设计就是采用这种应力集中原理,芯片结构的力学特性分析及样件测试结果表明,这种结构的微压传感器具有较高的灵敏度和较低的非线性,成功地实现了对微小压力的测量.利用有限元仿真计算对用于100Pa压力测量的梁-膜结构硅压力传感器的结构参数进行优化,并对芯片版图设计、制作工艺技术和传感器的特性等问题进行了讨论.  相似文献   

9.
为了获得旋转导弹模型表面复杂的压力变化,设计了一套嵌入式无线压力测量系统,该系统能够以1 kHz的采样频率对8个压力通道进行同步采集。该绝对压力测量系统的量程为30 PSI,静态测量误差小于5/10 000;在连接10 cm的测压软管后,系统的动态延迟小于1.16 ms,信号幅值衰减小于1%。利用该嵌入式的无线测压系统,在高速风洞中开展了模型表面压力测试,对旋转导弹模型的关键区域多点的表面压力进行了测量,获得了表面压力的动态特征。结果表明:所提出的非定常表面压力测试技术可同步多点测量旋转导弹模型表面压力,为开展相关旋转模型气动特性风洞试验提供了一种有效的非定常表面压力测试手段。  相似文献   

10.
针对高超声速风洞试验模型底压测量误差较大而导致模型底阻难以精确扣除的问题,在Φ1m高超声速风洞中开展了3种底压测量方法的对比研究,即电子扫描压力测量方法、低压力差压传感器测量方法和微型绝压传感器测量方法,并在马赫数6试验条件下开展了HB-2标模和某导弹模型试验验证。试验结果表明:采用微型绝压传感器进行模型底部压力测量能避免测压管路的影响,可快速响应高超声速风洞试验模型底部压力变化情况,有效提高模型底压的测量精准度。  相似文献   

11.
研究昆虫运动时其脚掌与接触面间的接触力学规律及其附着机制,可以为多足爬行机器人的设计提供理论依据。研制的微牛级应变式力传感器,用来测试昆虫无障碍运动时与接触面间的3维接触力。对黄斑蝽在地面和垂直壁面两种状态下爬行时与接触面的作用力进行测试,分析了力的作用机理。在垂直壁面状态下,昆虫向上爬行时将身体向上推进的同时,会产生防止身体倾覆的吸附力。  相似文献   

12.
基于微型压力传感器阵列的翼面压力分布直接测量系统   总被引:1,自引:1,他引:0  
研发了微型压力传感器并构成柔性衬底基阵列,直接置于翼型外表面实现压力分布测量.结合传感器特性和气动测量需求,设计了压力传感器阵列恒流驱动电路和差分滤波电路,并通过LabVIEW调用所开发的MAT-LAB的应用程序实现了数据的在线处理和实时显示.结合NACA0012翼型对该测压系统进行了低速风洞实验.对其有效进行了初步验证.  相似文献   

13.
本文介绍了一种从日本引进的高温高压压力传感器的结构特点和工作原理。  相似文献   

14.
不同条件下圆柱状容器水压爆破压力测试及其分析   总被引:1,自引:0,他引:1  
利用声学近似原理,采用镜像法分析容器直径、注水深度、装药位置、容器顶底面以及侧壁约束等对水压爆破冲击波产生的最大超压及冲量的影响,通过采用压力传感器测量水压爆破底部固壁不同部位的压力波形和高速摄影测量物体的运动速度,对理论分析进行了验证。可以为类似水压爆破装药参数的确定提供依据。  相似文献   

15.
简述了列车交会动态压力波实车实验测试系统的组成和基本原理。系统以压阻式压力传感器、数据采集仪和微机为核心,应用超声、红外检测技术,实现了列车交会压力波、交会车辆侧壁间距及相对车速的同时测量,并成功应用于广深线实车实验中。文中还探讨了实车实验中存在的其它问题和解决方法  相似文献   

16.
针对高温结构激光扫描模态测试中存在的噪声问题,提出了一种基于模态峰值汉克尔奇异值分解的降噪处理与模态参数识别方法。首先,将测试得到的频率响应函数(Frequency Response Function(FRF))经过FFT逆变换得到对应的时间域脉冲响应函数(Impulse Response Function(IRF)),并通过汉克尔奇异值分解(Hankel Singular Value Decomposition (HSVD)),进一步将脉冲响应函数转化为按能量从大到小顺序排列的一系列分量信号组合;其次,以恢复所有关心的模态峰值为基准,将分量信号从前到后累加,并在所关心的模态峰值完全恢复后,将剩余分量信号当作噪声舍弃掉;该步骤会去除掉信号中包含的大部分噪声,但仍会有一些残余噪声不可避免地被恢复;再次,对步骤二中提取得到的分量信号,采用基于模态峰值频率通带的迭代选取进行二次滤波,以分离出属于模态峰值的分量信号,进而将它们累加为降噪后的IRF信号,并转换至频域以获取降噪后FRF信号;最后,对降噪后的频响函数进行模态辨识以提取模态参数。本方法应用于600度高温环境下一个直板叶片的激光扫描模态测试数据的处理,结果表明频响函数中的噪声被有效滤去,模态参数可准确地提取,显示了方法的有效性和优越性。  相似文献   

17.
为了满足动态燃烧试验对燃烧过程中燃烧放热量、温度、压力多参数动态测量的要求,研制了一套燃烧动态测试系统。首先从理论上分析了碳氢燃料燃烧时的化学反应过程与物理现象,采用光电传感技术,实现了对动态燃烧过程放热量的非接触式测量;其次运用动态理论详细研究了热电偶的动态特性,完善了用双丝频谱补偿法测量动态温度的方法;最后选择了合理的动态压力的测量方案。同时介绍了该系统的结构及工作特点、系统的动态联调结果等。试验表明了测试该系统具有所测参数多、工作性能稳定、动态响应快等特点,可广泛应用于动态与稳态燃烧试验研究或工业过程监控测量中  相似文献   

18.
使用外置压力传感器测量非定常压力会造成非定常测量信号失真. 这是由连接外置传感器和测点之间的管道传压系统引成的. 阐述了一种修正这种非定常信号失真的方法.从而使得运用外置传感器测量非定常压力成为可能.这种技术使用已知的管传递函数在频域中修正非定常测量信号的失真. 同时修正失真信号振幅的变化和相位角的偏移.给出了这种修正技术的运用实例:在叶轮机颤振试验中测量叶片表面非定常压力和在非定常旋涡脱落试验中测量尾迹.  相似文献   

19.
随着社会文明程度的不断提高和人口老龄化的发展,人体股骨骨折的预防在现代社会中的重要性和巨大社会意义日益引起人们的关注。通过仿真实验研究冲击状态下人体皮下脂肪对冲击能量的吸收和冲击力的衰减机理,可以为骨折防护器的设计提供可靠依据。本文介绍了利用压电薄膜制作的超薄测力传感器在上述实验中的应用、测量原理和和测量系统的构成以及与之相配套的计算机应用软件。  相似文献   

20.
本文介绍提高机械式压力扫描阀测量精度的方法:实时采集传感器的初读数,消除传感器的零漂误差;实时校正传感器,消除电压与压力换算系数的误差;选用高分辨率、高精度的模数转换板;采用数字滤波法及使用小量程传感器提高采集数据精度,使机械式压力扫描间能很好地在低速风洞中应用,并满足试验要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号