首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Previous chemical vapor transport experiments of the GeSe-GeI4 system performed under reduced gravity conditions /1/ yielded crystals of considerably improved surface and bulk morphology. In addition, the mass transport rates observed in microgravity environment were significantly greater than predicted. A quantitative thermodynamic analysis of the solid-gas phase reactions of the GeSe-GeI4 system revealed the multi-component, multi-reaction nature of the vapor phase /2/. Continued transport studies on ground of the GeSe-GeI4 system in the presence of inert gases provided experimental evidence for the existence of a boundary layer /2/ and its thickness dependence on GeI4 pressure in closed tube systems. Systematic transport rate measurements for different orientations of the density gradient relative to the gravity vector demonstrated the effects of ampoule inclination on mass flux /3/. Based on a computational model for simultaneous chemical vapor transport, sublimation, and Stefan flow /3/, the excellent agreement of predicted with ground-based experimental mass transport rates over wide pressure ranges /3/ confirmed the validity of the model and the discrepancy between observed and expected transport rates of the GeSe-GeI4 system in microgravity.  相似文献   

2.
在长期空间飞行过程中, 骨质丢失是一个严重问题. 羟基磷灰石(HAP)晶体是骨骼的主要成分, 骨骼中的胶原蛋白纤维在HAP生长结晶过程中起到关键作用. 研究了胶原蛋白纤维化过程在模拟微重力和常重力条件下的变化, 对以胶原 蛋白纤维作为模板生长出的HAP晶体形貌进行了观察. 结果表明, 不同浓度胶原蛋白溶液中形成的胶原蛋白纤维, 其内部孔隙数量和尺寸在模拟微重力条件下要明显大于常重力条件下, 胶原蛋白纤维内部孔隙的分布也不同于常重力条 件下的结果. 以模拟微重力条件下形成的胶原蛋白纤维为模板生长出的HAP 晶体主要为立方体状, 而以常重力条件下形成的胶原蛋白纤维为模板生长出的 HAP晶体形貌主要为板状. 该结果有助于未来进一步阐明空间骨质丢失的机理.   相似文献   

3.
The calculation of two-phase frictional pressure drop (TPFPD) is required by two-phase systems operating under microgravity and reduced gravity. There are a large number of correlations for the TPFPD in tubes under normal gravity. However, it is hard to find out a TPFPD correlation obtained from microgravity and/or reduced gravity conditions, and thus people have to use TPFPD correlations for normal gravity to calculate TPFPD under microgravity and reduced gravity. It is necessary to evaluate the feasibility of such practice. This paper offers a comprehensive review of the TPFPD correlations for normal gravity and an up-to-data survey of the TPFPD experimental study under microgravity and reduced gravity. There are 23 TPFPD correlations for normal gravity reviewed and 135 experimental data under microgravity obtained from the literature. These experimental data are used to evaluate the reviewed TPFPD correlations. It is found that the smallest mean absolute relative deviation (MARD) of the correlations is greater than 34%. Using TPFPD correlations for normal gravity to reduced gravity and microgravity may be acceptable for the first approximation, but correlations intended for microgravity and reduced gravity are needed and more experiments are desired to obtain more data with high accuracy.  相似文献   

4.
Calcium signaling in plant cells in altered gravity.   总被引:5,自引:0,他引:5  
Changes in the intracellular Ca2+ concentration in altered gravity (microgravity and clinostating) evidence that Ca2+ signaling can play a fundamental role in biological effects of microgravity. Calcium as a second messenger is known to play a crucial role in stimulus-response coupling for many plant cellular signaling pathways. Its messenger functions are realized by transient changes in the cytosolic ion concentration induced by a variety of internal and external stimuli such as light, hormones, temperature, anoxia, salinity, and gravity. Although the first data on the changes in the calcium balance in plant cells under the influence of altered gravity have appeared in 80th, a review highlighting the performed research and the possible significance of such Ca2+ changes in the structural and metabolic rearrangements of plant cells in altered gravity is still lacking. In this paper, an attempt was made to summarize the available experimental results and to consider some hypotheses in this field of research. It is proposed to distinguish between cell gravisensing and cell graviperception; the former is related to cell structure and metabolism stability in the gravitational field and their changes in microgravity (cells not specialized to gravity perception), the latter is related to active use of a gravitational stimulus by cells presumebly specialized to gravity perception for realization of normal space orientation, growth, and vital activity (gravitropism, gravitaxis) in plants. The main experimental data concerning both redistribution of free Ca2+ ions in plant cell organelles and the cell wall, and an increase in the intracellular Ca2+ concentration under the influence of altered gravity are presented. Based on the gravitational decompensation hypothesis, the consequence of events occurring in gravisensing cells not specialized to gravity perception under altered gravity are considered in the following order: changes in the cytoplasmic membrane surface tension --> alterations in the physicochemical properties of the membrane --> changes in membrane permeability, --> ion transport, membrane-bound enzyme activity, etc. --> metabolism rearrangements --> physiological responses. An analysis of data available on biological effects of altered gravity at the cellular level allows one to conclude that microgravity environment appears to affect cytoskeleton, carbohydrate and lipid metabolism, cell wall biogenesis via changes in enzyme activity and protein expression, with involvement of regulatory Ca2+ messenger system. Changes in Ca2+ influx/efflux and possible pathways of Ca2+ signaling in plant cell biochemical regulation in altered gravity are discussed.  相似文献   

5.
Function of the cytoskeleton in gravisensing during spaceflight.   总被引:12,自引:0,他引:12  
Since astronauts and cosmonauts have significant bone loss in microgravity we hypothesized that there would be physiological changes in cellular bone growth and cytoskeleton in the absence of gravity. Investigators from around the world have studied a multitude of bone cells in microgravity including Ros 17/2.8, Mc3T3-E1, MG-63, hFOB and primary chicken calvaria. Changes in cytoskeleton and extracellular matrix (ECM) have been noted in many of these studies. Investigators have noted changes in shape of cells exposed to as little as 20 seconds of microgravity in parabolic flight. Our laboratory reported that quiescent osteoblasts activated by sera under microgravity conditions had a significant 60% reduction in growth (p<0.001) but a paradoxical 2-fold increase in release of the osteoblast autocrine factor PGE2 when compared to ground controls. In addition, a collapse of the osteoblast actin cytoskeleton and loss of focal adhesions has been noted after 4 days in microgravity. Later studies in Biorack on STS-76, 81 and 84 confirmed the increased release of PGE2 and collapse of the actin cytoskeleton in cells grown in microgravity conditions, however flown cells under 1 g conditions maintained normal actin cytoskeleton and fibronectin matrix. The changes seen in the cytoskeleton are probably not due to alterations in fibronectin message or protein synthesis since no differences have been noted in microgravity. Multiple investigators have observed actin and microtubule cytoskeletal modifications in microgravity, suggesting a common root cause for the change in cell architecture. The inability of the O g grown osteoblast to respond to sera activation suggests that there is a major alteration in anabolic signal transduction under microgravity conditions, most probably through the growth factor receptors and/or the associated kinase pathways that are connected to the cytoskeleton. Cell cycle is dependent on the cytoskeleton. Alterations in cytoskeletal structure can block cell growth either in G1 (F-actin microfilament collapse), or in G2/M (inhibition of microtubule polymerization during G2/M-phase). We therefore hypothesize that microgravity would inhibit growth in either G1, or G2/M.  相似文献   

6.
The effect of natural convection in the melt on impurity distribution is investigated by numerical simulation in the case of uniaxial growth of semiconductor crystals at low gravity conditions.  相似文献   

7.
For the study of gravity's role in the processes of plant cell differentiation in-vitro, a model "seed-seedling-callus" has been used. Experiments were carried out on board the orbital stations Salyut-7 and Mir as well as on clinostat. They lasted from 18 to 72 days. It was determined that the exclusion of a one-sided action of gravity vector by means of clinostat and spaceflight conditions does not impede the formation and growth of callus tissue; however, at cell and subcellular levels structural and functional changes do take place. No significant changes were observed either on clinostat or in space concerning the accumulation of fresh biomass, while the percentage of dry material in space is lower than in control. Both in microgravity (MG) and in control, even after 72 days of growth, cells with a normally developed ultrastructure are present. In space, however, callus tissue more often contains cells in which the cross-section area of a cell, a nuclei and of mitochondria are smaller and the vacuole area--bigger than in controls. In microgravity a considerable decrease in the number of starch-containing cells and a reduction in the mean area of starch grains in amyloplasts is observed. In space the amount of soluble proteins in callus tissue is 1.5 times greater than in control. However, no differences were observed in fractions when separated by the SDS-PAGE method. In microgravity the changes in cell wall material components was noted. In the space-formed callus changes in the concentration of ions K, Na, Mg, Ca and P were observed. However, the direction of these changes depends on the age of callus. Discussed are the possible reasons for modification of morphological and metabolic parameters of callus cells when grown under changed gravity conditions.  相似文献   

8.
The colonization of space will depend on our ability to routinely provide for the metabolic needs (oxygen, water, and food) of a crew with minimal re-supply from Earth. On Earth, these functions are facilitated by the cultivation of plant crops, thus it is important to develop plant-based food production systems to sustain the presence of mankind in space. Farming practices on earth have evolved for thousands of years to meet both the demands of an ever-increasing population and the availability of scarce resources, and now these practices must adapt to accommodate the effects of global warming. Similar challenges are expected when earth-based agricultural practices are adapted for space-based agriculture. A key variable in space is gravity; planets (e.g. Mars, 1/3 g) and moons (e.g. Earth's moon, 1/6 g) differ from spacecraft orbiting the Earth (e.g. Space stations) or orbital transfer vehicles that are subject to microgravity. The movement of heat, water vapor, CO2 and O2 between plant surfaces and their environment is also affected by gravity. In microgravity, these processes may also be affected by reduced mass transport and thicker boundary layers around plant organs caused by the absence of buoyancy dependent convective transport. Future space farmers will have to adapt their practices to accommodate microgravity, high and low extremes in ambient temperatures, reduced atmospheric pressures, atmospheres containing high volatile organic carbon contents, and elevated to super-elevated CO2 concentrations. Farming in space must also be carried out within power-, volume-, and mass-limited life support systems and must share resources with manned crews. Improved lighting and sensor technologies will have to be developed and tested for use in space. These developments should also help make crop production in terrestrial controlled environments (plant growth chambers and greenhouses) more efficient and, therefore, make these alternative agricultural systems more economically feasible food production systems.  相似文献   

9.
采用VOF (Volume of Fluid)多相流模型, 通过用户自定义函数UDF (User Defined Function)实现相变过程中质量和能量的输运, 对微重力条件下尺寸为10mm × 10mm × 25mm的矩形通道的池沸腾现象进行数值模拟, 得到了微重力及常重力作用下单个气泡生长特性的差异. 模拟结果表明, 微重力条件下气泡周围的流线与温度场的分布有显著差异; 由于表面张力作用, 微重力下的气泡脱离特性与常重力下不同; 在微重力条件下, 气泡直径的变化比较复杂, 并与重力加速度的大小有关; Marangoni流对微重力下的流动影响很大, 使换热系数波动, 而且波动的幅度随重力加速度的减小而增大.   相似文献   

10.
Numerous spaceflight experiments have noted changes in the roots that are consistent with hypoxia in the root zone. These observations include general ultrastructure analysis and biochemical measurements to direct measurements of stress specific enzymes. In experiments that have monitored alcohol dehydrogenase (ADH), the data shows this hypoxically responsive gene is induced and is associated with increased ADH activity in microgravity. These changes in ADH could be induced either by spaceflight hypoxia resulting from inhibition of gravity mediated O2 transport, or by a non-specific stress response due to inhibition of gravisensing. We tested these hypotheses in a series of two experiments. The objective of the first experiment was to determine if physical changes in gravity-mediated O2 transport can be directly measured, while the second series of experiments tested whether disruption of gravisensing can induce a non-specific ADH response. To directly measure O2 bioavailability as a function of gravity, we designed a sensor that mimics metabolic oxygen consumption in the rhizosphere. Because of these criteria, the sensor is sensitive to any changes in root O2 bioavailability that may occur in microgravity. In a KC-135 experiment, the sensor was implanted in a moist granular clay media and exposed to microgravity during parabolic flight. The resulting data indicated that root O2 bioavailability decreased in phase with gravity. In experiments that tested for non-specific induction of ADH, we compared the response of transgenic Arabidopsis plants (ADH promoted GUS marker gene) exposed to clinostat, control, and waterlogged conditions. The plants were grown on agar slats in a growth chamber before being exposed to the experimental treatments. The plants were stained for GUS activity localization, and subjected to biochemical tests for ADH, and GUS enzyme activity. These tests showed that the waterlogging treatment induced significant increases in GUS and ADH enzyme activities, while the control and clinostat treatments showed no response. This work demonstrates: (1) the inhibition of gravity-driven convective transport can reduce the O2 bioavailability to the root tip, and (2) the perturbation of gravisensing by clinostat rotation does not induce a nonspecific stress response involving ADH. Together these experiments support the microgravity convection inhibition model for explaining changes in root metabolism during spaceflight.  相似文献   

11.
The influence of cosmic radiation and/or microgravity on insect development was studied during the 7 day German Spacelab Mission D1. Eggs of Carausius morosus of five stages differing in sensitivity to radiation and in capacity to regeneration were allowed to continue their development in the BIORACK 22°C incubator, either at microgravity conditions or on the 1 g reference centrifuge. Using the Biostack concept - eggs in monolayers were sandwiched between visual track detectors - and the 1 g reference centrifuge, we were able to separate radiation effects from microgravity effects and also from combined effects of these two factors in space. After retrieval, hatching rates, growth kinetics and anomaly frequencies were determined in the different test samples. The early stages of development turned out to be highly sensitive to single hits of cosmic ray particles as well as to the temporary exposure to microgravity during their development. In some cases, the combined action of radiation and microgravity even amplified the effects exerted by the single parameters of space. Hits by single HZE particles caused early effects, such as body anomalies, as well as late effects, such as retarded growth after hatching. Microgravity exposure lead to a reduced hatching rate. A synergistic action of HZE particle hits and microgravity was established in the unexpectedly high frequency of anomal larvae. However, it cannot be excluded, that cosmic background radiation or low LET HZE particles are also causally involved in damage observed in the microgravity samples.  相似文献   

12.
微重力下相变储能单元融化过程数值模拟   总被引:2,自引:0,他引:2  
为探究微重力环境中,通过肋片强化了传热的相变储能单元中相变材料融化过程,通过数值模拟方法探究了微重力作用时相变材料融化过程中传热特性。通过地面实验与重力作用下数值模拟结果对比验证数值模拟方法的准确性,对比重力和微重力作用2种情况下数值模拟结果以揭示微重力环境中相变材料融化过程的特性。结果表明,当相变储能单元受微重力作用时,相变材料融化速率明显下降,热量主要通过热传导传递,融化的相变材料从顶端膨胀溢出向空间扩散,局部低温区域在相变储能单元中上部。   相似文献   

13.
比较研究了SJ-8返回式卫星留轨舱微重力条件与地面三维回转模拟微重力条件下青菜生长与发育情况.研究发现空间微重力条件下青菜开花过程需要大约18 h,明显长于地面对照5 h左右.回转器模拟实验结果表明,改变重力影响了花瓣的伸展与发育及花粉的产量,回转条件下花粉细胞中的微管排列明显不同于静止对照.细胞骨架受到干扰可能是改变重力条件下花粉产量降低的原因之一.本研究首次报道了在空间飞行试验中成功地采用了显微实时图像技术观察植物的开花过程,并获得了从花蕾到开花结束各阶段清晰的图像.   相似文献   

14.
In order to help resolve some of the controversy associated with ground-based research that has supported the starch-statolith theory of gravity perception in plants, we performed spaceflight experiments with Arabidopsis in Biorack during the January 1997 and May 1997 missions of the Space Shuttle. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then were given either a 30, 60, or 90 minute gravity stimulus on a centrifuge. By the 90 min 1-g stimulus, the WT exhibited the greatest magnitude of curvature and the starchless mutant exhibited the smallest curvature while the two reduced starch mutants had an intermediate magnitude of curvature. In addition, space-grown plants had two structural features that distinguished them from the controls: a greater number of root hairs and an anomalous hypocotyl hook structure. However, the morphological changes observed in the flight seedlings are likely to be due to the effects of ethylene present in the spacecraft. (Additional ground-based studies demonstrated that this level of ethylene did not significantly affect gravitropism nor did it affect the relative gravitropic sensitivity among the four strains.) Nevertheless, this experiment on gravitropism was performed the "right way" in that brief gravitational stimuli were provided, and the seedlings were allowed to express the response without further gravity stimuli. Our spaceflight results support previous ground-based studies of these and other mutants since increasing amounts of starch correlated positively with increasing sensitivity to gravity.  相似文献   

15.
微重力效应的物理解释及其应用   总被引:2,自引:0,他引:2  
讨论了微重力效应及其分子物理学解释,万有引力的单极性决定了它的累积性和宏观性,重力对自由分子的影响是微科其微的,然而在流钵,特别是在液体内部的具体条件下,重力对流体内部分子集团产生明显影响,以宏观的静压强形式表现出来。而当重力变小,变微,流体内部的静压强也就趋于消失,由静压强产生的二级现象,如异相沉降或浮泛。同相的浮泛对流,液体自约束成球形,也就消失,这些就是微重力的一,二级物理效应,本文认为,Bossinesq近似对于流体而言实质上是线性热力学假设或近平衡态假设,可以用初始平衡态的物性参量表征临界点时的无量纳数,提出一种重力消失诱发非平衡态向平衡态蜕变的猜想,从文中导出的瑞利数Rα的表达式可以看出,重力加速度的消失,可以使瑞利数的值从远离平衡态的湍流蜕变到稳定流动的瑞利-贝纳对流胞,甚至是没有宏观流动的平衡态,最后,将本文给出的理论解释模型应用到空间材料加工所需微重力水平的估算、窨材料加工工艺的微重力利用准则和空间装置中气体自然对流传热状态模拟的低真空和微重力的互换性方面。  相似文献   

16.
Single crystals of binary III-V-semiconductors, e.g. GaAs or InP, are important basic materials for optoelectronic devices, e.g. LED's and lasers. Device production needs highly perfect substrate crystals with low defect densities and homogeneous dopant distributions. In our experiment we applied the Travelling-Heater-Method to grow the III-V compound GaSb. The aim of this research project was to improve the crystal quality by investigating convective transport phenomena and the origins of dopant inhomogeneities under earth and space conditions. Earth grown crystals show strong dopant variations mainly due to convective flow phenomena. The preliminary result of our SPACELAB 1 experiment reveals an increase of dopant homogeneity in the space grown crystal because of the absence of natural convection under reduced gravity.  相似文献   

17.
The question is posed: Why does a living cell react to the absence of gravity? What sensors may it have? Does it note pressure, sedimentation, convection, or other parameters?

If somewhere in a liquid volume sodium ions are replaced by potassium ions, the density of the liquid changes locally: the heavier regions sink, the lighter regions rise. This may contribute to species transport, to the metabolism. Under microgravity this mechanism is strongly reduced. On the other hand, other reasons for convection like thermal and solutal interface convection are left. Do they affect species transport?

Another important effect of gravity is the hydrostatic pressure. On the macroscopic side, the pressure between our head and feet changes by 0.35 atmospheres. On the microscopic level the hydrostatic pressure on the upper half of a cell membrane is lower than on the lower half. This, by affecting the ion transport through the membrane, may change the surrounding electric potential. It has been suggested to be one of the reasons for graviperception.

Following the discussion of these and other effects possibly important in life sciences in space, an order of magnitude analysis of the residual accelerations tolerable during experiments in materials sciences is outlined. In the field of life sciences only rough estimates are available at present.  相似文献   


18.
Gravitropic tip growth of Chara rhizoids is dependent on the presence and functional interaction between statoliths, cytoskeleton and the tip-growth-organizing complex, the Spitzenkorper. Microtubules are essential for the polar cytoplasmic zonation but are excluded from the apex and do not play a crucial role in the primary steps of gravisensing and graviresponse. Actin filaments form a dense meshwork in the subapical zone and converge into a prominent apical actin patch which is associated with the endoplasmic reticulum (ER) aggregate representing the structural center of the Spitzenkorper. The position of the statoliths is regulated by gravity and a counteracting force mediated by actomyosin. Reducing the acceleration forces in microgravity experiments causes a basipetal displacement of the statoliths. Rhizoids grow randomly in all directions. However, they express the same cell shape and cytoplasmic zonation as ground controls. The ultrastructure of the Spitzenkorper, including the aggregation of ER, the assembly of vesicles in the apex, the polar distribution of proplastids, mitochondria, dictyosomes and ER cisternae in the subapical zone is maintained. The unaltered cytoskeletal organization, growth rates and gravitropic responsiveness indicate that microgravity has no major effect on gravitropic tip-growing Chara rhizoids. However, the threshold value of gravisensitivity might be different from ground controls due to the altered position of statoliths, a possibly reduced amount of BaSO4 in statoliths and a possible adaptation of the actin cytoskeleton to microgravity conditions.  相似文献   

19.
Growth of pea epicotyl in low magnetic field implication for space research   总被引:2,自引:0,他引:2  
A magnetic field is an inescapable environmental factor for plants on the earth. However, its impact on plant growth is not well understood. In order to survey how magnetic fields affect plant, Alaska pea seedlings were incubated under low magnetic field (LMF) and also in the normal geo-magnetic environment. Two-day-old etiolated seedlings were incubated in a magnetic shield box and in a control box. Sedimentation of amyloplasts was examined in the epicotyls of seedlings grown under these two conditions. The elongation of epicotyls was promoted by LMF. Elongation was most prominent in the middle part of the epicotyls. Cell elongation and increased osmotic pressure of cell sap were found in the epidermal cells exposed to LMF. When the gravitational environment was 1G, the epicotyls incubated under both LMF and normal geomagnetic field grew straight upward and amyloplasts sedimented similarly. However, under simulated microgravity (clinostat), epicotyl and cell elongation was promoted. Furthermore, the epicotyls bent and amyloplasts were dispersed in the cells in simulated microgravity. The dispersion of amyloplasts may relate to the posture control in epicotyl growth under simulated microgravity generated by 3D clinorotation, since it was not observed under LMF in 1G. Since enhanced elongation of cells was commonly seen both at LMF and in simulated microgravity, all elongation on the 3D-clinostat could result from pseudo-low magnetic field, as a by-product of clinorotation. (i.e., clinostat results could be based on randomization of magnetic field together with randomization of gravity vector.) Our results point to the possible use of space for studies in magnetic biology. With space experiments, the effects of dominant environmental factors, such as gravity on plants, could be neutralized or controlled for to reveal magnetic effects more clearly.  相似文献   

20.
针对在微重力环境中运行的载人航天飞行器上的电缆和导线在工作时由于电流过载导致温度升高而引起着火的情况,提出了"功能模拟"实验原理,并且利用地面实验设备对微重力环境下导线的着火前期特性进行了功能模拟实验研究.通过实验,得到了在微重力情况下由于浮升力的减小使自然对流减弱导致电流过载时导线的热平衡温度高于地面正常重力情况,从而证明了这正是引起航天飞行器着火的潜在点火源.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号