首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The NASA Ionospheric Connection Explorer Extreme Ultraviolet spectrograph, ICON EUV, will measure altitude profiles of the daytime extreme-ultraviolet (EUV) OII emission near 83.4 and 61.7 nm that are used to determine density profiles and state parameters of the ionosphere. This paper describes the algorithm concept and approach to inverting these measured OII emission profiles to derive the associated \(\mathrm{O}^{+}\) density profile from 150–450 km as a proxy for the electron content in the F-region of the ionosphere. The algorithm incorporates a bias evaluation and feedback step, developed at the U.S. Naval Research Laboratory using data from the Special Sensor Ultraviolet Limb Imager (SSULI) and the Remote Atmospheric and Ionospheric Detection System (RAIDS) missions, that is able to effectively mitigate the effects of systematic instrument calibration errors and inaccuracies in the original photon source within the forward model. Results are presented from end-to-end simulations that convolved simulated airglow profiles with the expected instrument measurement response to produce profiles that were inverted with the algorithm to return data products for comparison to truth. Simulations of measurements over a representative ICON orbit show the algorithm is able to reproduce hmF2 values to better than 5 km accuracy, and NmF2 to better than 12% accuracy over a 12-second integration, and demonstrate that the ICON EUV instrument and daytime ionosphere algorithm can meet the ICON science objectives which require 20 km vertical resolution in hmF2 and 18% precision in NmF2.  相似文献   

2.
《中国航空学报》2021,34(2):407-419
Ionospheric variability is influenced by many factors, such as solar radiation, neutral atmosphere composition, and geomagnetic disturbances. Mainly characterized by the total electron content (TEC) and electron density, the climatology of the ionosphere features temporal and spatial changes. Establishing a multivariant regression model helps substantially in better understanding the ionosphere characteristics and their long-term variability. In this paper, an improvement of the existing ionosphere multivariate linear fitting regression model is proposed and investigated using data from both the ionosonde and the global ionosphere map (GIM) derived from ground-based Global Navigation Satellite System (GNSS) observations. The proposed method gives more consideration to the impact of the solar activity and adds modeling of the annual periodic fluctuations and half-year periodic fluctuations for the F10.7 index. The improved model is verified to have a better correlation with the real observations and can help reduce the calculation uncertainty. Moreover, the proposed model is used to evaluate the fitting accuracy of the GIMs produced by five authorized data analysis centers from the International GNSS Service (IGS). The results show that there is a fixing hole in the North America region for the GIM model where the correlation between the GIM and the proposed model always returns lower values compared to other places.  相似文献   

3.
The Polar Ionospheric X-ray Imaging Experiment (PIXIE)   总被引:2,自引:0,他引:2  
The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is an X-ray multiple-pinhole camera designed to image simultaneously an entire auroral region from high altitudes. It will be mounted on the despun platform of the POLAR spacecraft and will measure the spatial distribution and temporal variation of auroral X-ray emissions in the 2 to 60 keV energy range on the day side of the Earth as well as the night. PIXIE consists of two pinhole cameras integrated into one assembly, each equipped with an adjustable aperture plate that allows an optimum number of nonoverlapping images to be formed in the detector plane at each phase of the satellite's eccentric orbit. The aperture plates also allow the pinhole size to be adjusted so that the experimenter can trade off spatial resolution against instrument sensitivity. In the principal mode of operation, one aperture plate will be positioned for high spatial resolution and the other for high sensitivity. The detectors consist of four stacked multiwire position-sensitive proportional counters, two in each of two separate gas chambers. The front chamber operates in the 2–12 keV energy range and the rear chamber in the 10–60 keV range. All of the energy and position information for each telemetered X-ray event is available on the ground. This enables the experimenter to adjust the exposure timepostfacto so that energy spectra of each X-ray emitting region can be independently accumulated. From these data PIXIE will provide, for the first time, global images of precipitated energetic electron spectra, energy inputs, ionospheric electron densities, and upper atmospheric conductivities.  相似文献   

4.
An Overview of the Fast Auroral SnapshoT (FAST) Satellite   总被引:3,自引:0,他引:3  
Pfaff  R.  Carlson  C.  Watzin  J.  Everett  D.  Gruner  T. 《Space Science Reviews》2001,98(1-2):1-32
The FAST satellite is a highly sophisticated scientific satellite designed to carry out in situ measurements of acceleration physics and related plasma processes associated with the Earth's aurora. Initiated and conceptualized by scientists at the University of California at Berkeley, this satellite is the second of NASA's Small Explorer Satellite program designed to carry out small, highly focused, scientific investigations. FAST was launched on August 21, 1996 into a high inclination (83°) elliptical orbit with apogee and perigee altitudes of 4175 km and 350 km, respectively. The spacecraft design was tailored to take high-resolution data samples (or `snapshots') only while it crosses the auroral zones, which are latitudinally narrow sectors that encircle the polar regions of the Earth. The scientific instruments include energetic electron and ion electrostatic analyzers, an energetic ion instrument that distinguishes ion mass, and vector DC and wave electric and magnetic field instruments. A state-of-the-art flight computer (or instrument data processing unit) includes programmable processors that trigger the burst data collection when interesting physical phenomena are encountered and stores these data in a 1 Gbit solid-state memory for telemetry to the Earth at later times. The spacecraft incorporates a light, efficient, and highly innovative design, which blends proven sub-system concepts with the overall scientific instrument and mission requirements. The result is a new breed of space physics mission that gathers unprecedented fields and particles observations that are continuous and uninterrupted by spin effects. In this and other ways, the FAST mission represents a dramatic advance over previous auroral satellites. This paper describes the overall FAST mission, including a discussion of the spacecraft design parameters and philosophy, the FAST orbit, instrument and data acquisition systems, and mission operations.  相似文献   

5.
The equations for the Earth-ionosphere cavity resonance fields are given and some of the approximations used in their derivation are indicated. Typical electric and magnetic 5 to 20 Hz Schumann resonance field intensities are listed and compared with the level of other natural and man-made electromagnetic noise. Applications of Schumann resonances to thunderstorm location and measurement of global lightning activity are reviewed briefly. Ionospheric conductivity profiles appropriate for this frequency range are discussed and the importance of atmospheric conductivity below 60 km is pointed out.  相似文献   

6.
The NASA Ionospheric Connection explorer (ICON) will study the coupling between the thermosphere and ionosphere at low- and mid-latitudes by measuring the key parameters. The ICON mission will also employ numerical modeling to support the interpretation of the observations, and examine the importance of different vertical coupling mechanisms by conducting numerical experiments. One of these models is the Thermosphere-Ionosphere-Electrodynamics General Circulation Model-ICON (TIEGCM-ICON) which will be driven by tidal perturbations derived from ICON observations using the Hough Mode Extension method (HME) and at high latitude by ion convection and auroral particle precipitation patterns from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE). The TIEGCM-ICON will simulate the thermosphere-ionosphere (TI) system during the period of the ICON mission. In this report the TIEGCM-ICON is introduced, and the focus is on examining the effect of the lower boundary on the TI-system to provide some guidance for interpreting future ICON model results.  相似文献   

7.
Marklund  Göran  André  Mats  Lundin  Rickard  Grahn  Sven 《Space Science Reviews》2004,111(3-4):377-413
The success of the Swedish small satellite program, in combination with an active participation by Swedish research groups in major international missions, has placed Sweden in the frontline of experimental space research. The program started with the development of the research satellite Viking which was launched in 1986, for detailed investigations of the aurora. To date, Sweden has developed and launched a total of six research satellites; five for space plasma investigations; and the most recent satellite Odin, for research in astronomy and aeronomy. These fall into three main categories according to their physical dimension, financial cost and level of ambition: nano-satellites, micro-satellites, and mid-size satellites with ambitious scientific goals. In this brief review we focus on five space plasma missions, for which operations have ended and a comprehensive scientific data analysis has been conducted, which allows for a judgement of their role and impact on the progress in auroral research. Viking and Freja, the two most well-known missions of this program, were pioneers in the exploration of the aurora. The more recent satellites, Munin, Astrid, and Astrid-2 (category 1 and 2), proved to be powerful tools, both for testing new technologies and for carrying out advanced science missions. The Swedish small satellite program has been internationally recognized as cost efficient and scientifically very successful.  相似文献   

8.
Stüeken  E. E.  Som  S. M.  Claire  M.  Rugheimer  S.  Scherf  M.  Sproß  L.  Tosi  N.  Ueno  Y.  Lammer  H. 《Space Science Reviews》2020,216(3):1-17
Space Science Reviews - The Ionospheric Connection Explorer (ICON) mission makes measurements in near-Earth space that provide knowledge of the state of the ionosphere. From the vantage of...  相似文献   

9.
A broad, international, cooperative effort is under way to study and develop quantitative understanding of the fundamental electrodynamic processes in the solar-terrestrial environment. Japan, Europe, Russia, the United States, and other countries are providing spacecraft to be placed in key regions with the aim of utilizing coordinated, multipoint spaceflight measurements, ground-based observations, and theory to study the global energy budget of geospace. The U.S. contribution began in the late 1970's as the OPEN program (Origin of Plasmas in Earth's Neighborhood) and was reconstituted in the 1980's as the Global Geospace Science (GGS) program. The international effort, known in the U. S. as the International Solar Terrestrial Physics program (ISTP), began with the launch of the Japanese GEOTAIL in 1992, and will continue with the U. S. spacecraft WIND and POLAR in 1994–1995, and the European four-spacecraft Cluster fleet and its Solar and Heliospheric Observatory (SOHO) in 1995. Russia will launch its Interball set of four spacecraft in 1995. The Inter-Agency Consultative Group (IACG) is promoting the coordination of the spacecraft observations by means of scientific campaigns aimed at addressing scientific questions that can only be answered by observations from the multiple spacecraft. The Solar Terrestrial Energy Program (STEP) is coordinating the involvement of the broad scientific community and especially the correlative ground observations.  相似文献   

10.
The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150–450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere.  相似文献   

11.
科技成果鉴定改革刍议   总被引:3,自引:0,他引:3  
在肯定以往科技成果鉴定办法的积极作用的同时,指出了该办法在实施过程中所存在的一些弊端,在此基础上提出了对今后科技成果鉴定办法的改革设想。  相似文献   

12.
The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (~1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10?7 S?m?1 (for poorly conducting rocks) to 10?2 S?m?1 (for clay or wet limestone), with a mean value of 3.2 S?m?1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ~10?14 S?m?1 just above the surface to 10?7 S?m?1 in the ionosphere at ~80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ~1 pA m?2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (~+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ~130 V?m?1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.  相似文献   

13.
Uberoi  C. 《Space Science Reviews》2003,107(1-2):197-206
The surface wave induced magnetic reconnection (SWIMR) model based on Alfven Resonance theory will be discussed briefly both for collisional and collisionless plasmas. It is shown that the spatial scales and time delays associated with Flux Transfer Events and Pulsed Ionospheric Flows, as observed by satellites and SuperDARN radars and the magnetic bubbles, observed at the high latitude boundary of the magnetopause, can be explained by the SWIMR model. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
基于高职院校二级学院科研管理体制,分析科研活动中院校领导、二级学院领导、科研项目负责人、教师个体研究者和院校科研管理机构不同角色的职责和使命,提出二级学院为科研管理主体,以重点学科发展需求为导向,以科研项目申报为抓手的科研管理思路,实现提高科研管理水平,创造良好的科研环境的目的。  相似文献   

15.
The NASA Ionospheric Connection Explorer Far-Ultraviolet spectrometer, ICON FUV, will measure altitude profiles of the daytime far-ultraviolet (FUV) OI 135.6 nm and N2 Lyman-Birge-Hopfield (LBH) band emissions that are used to determine thermospheric density profiles and state parameters related to thermospheric composition; specifically the thermospheric column O/N2 ratio (symbolized as \(\Sigma\)O/N2). This paper describes the algorithm concept that has been adapted and updated from one previously applied with success to limb data from the Global Ultraviolet Imager (GUVI) on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. We also describe the requirements that are imposed on the ICON FUV to measure \(\Sigma\)O/N2 over any 500-km sample in daytime with a precision of better than 8.7%. We present results from orbit-simulation testing that demonstrates that the ICON FUV and our thermospheric composition retrieval algorithm can meet these requirements and provide the measurements necessary to address ICON science objectives.  相似文献   

16.
The design and laboratory tests of the interferometers for the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument which measures thermospheric wind and temperature for the NASA-sponsored Ionospheric Connection (ICON) Explorer mission are described. The monolithic interferometers use the Doppler Asymmetric Spatial Heterodyne (DASH) Spectroscopy technique for wind measurements and a multi-element photometer approach to measure thermospheric temperatures. The DASH technique and overall optical design of the MIGHTI instrument are described in an overview followed by details on the design, element fabrication, assembly, laboratory tests and thermal control of the interferometers that are the heart of MIGHTI.  相似文献   

17.
18.
A summary form is given of the author's full paper (ibid. vol. 33, p. 7, 1998). The ISS program is a huge investment by the U.S. government. It is estimated by NASA that the program will cost the American public more than $70 billion over a period of 30 years. Since the scientific impact of this program is relatively unknown (and uncertain), the question that policy makers will have to struggle with is whether the federal government should continue to fund the program, or to pull out from the program altogether, thus saving American taxpayers close to $30 billion. Although funding is a major concern, since the inclusion of Russia in the program, the ISS has also become a foreign policy tool. Therefore, additional questions about policy implications of the ISS program need to be addressed  相似文献   

19.
The large-scale electrical coupling between the ionosphere and magnetosphere is reviewed, particularly with respect to behavior on time scales of hours or more. The following circuit elements are included: (1) the magnetopause boundary layer, which serves as the generator for the magnetospheric-convection circuit; (2) magnetic field lines, usually good conductors but sometimes subject to anomalous resistivity; (3) the ionosphere, which can conduct current across magnetic field lines; (4) the magnetospheric particle distributions, including tail current and partial-ring currents. Magnetic merging and a viscous interaction are considered as possible generating mechanisms, but merging seems the most likely alternative. Several mechanisms have been proposed for causing large potential drops along magnetic field lines in the upper ionosphere, and many isolated measurements of parallel electric fields have been reported, but the global pattern and significance of these electric fields are unknown. Ionospheric conductivities are now thoroughly measured, but are highly variable. Simple self-consistent theoretical models of the magnetospheric-convection system imply that the magnetospheric particles should shield the inner magnetosphere and low-latitude ionosphere from most of the time-average convection electric field.  相似文献   

20.
Lemaire  J.  Scherer  M. 《Space Science Reviews》1974,15(5):591-640
The historical evolution of the study of escape of light gases from planetary atmospheres is delineated, and the application of kinetic theory to the ionsphere is discussed. Ionospheric plasma becomes collisionless above the ion-exobase which is located near 1000 km altitude in the trough and polar regions, and which coincides with the plasmapause at lower latitudes. When the boundary conditions at conjugate points of a closed magnetic field line are different, interhemispheric particle fluxes exist from the high temperature point to the low temperature point, and from the point of larger concentrations to the point of smaller concentrations; therefore the charge separation electric field in the exosphere is no longer given by the Pannekoek-Rosseland field. For non-uniform number densities and temperatures at the exobase, the observed r –4 variation of the equatorial density distribution is recovered in the calculated density distributions. Taking account of plasmasheet particle precipitation does not change very much the electric field and ionospheric ion distributions, at least for reasonable densities and temperatures of the plasmasheet electrons and protons. For field aligned current densities along auroral field lines smaller than 10–5 Am–2, the potential difference between the ion-exobase and plasmasheet is about –3V. In the case of open magnetic field lines the flow speed of hydrogen and helium ions in the exosphere becomes rapidly supersonic as a consequence of the upward directed charge separation electric field, whereas the oxygen ions have a negligible small bulk velocity. Adding a photoelectron efflux decreases the thermal electron escape but does not change significantly the number density distributions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号