共查询到11条相似文献,搜索用时 31 毫秒
1.
神舟3号运行高度上大气密度的变化 总被引:4,自引:2,他引:4
神舟3号(SZ-3)大气密度探测器搭载在SZ-3留轨舱上于2002年3月发射入轨,在轨运行期间获得了轨道舱运行高度范围(330-410km)内的大气密度数据.数据分析表明,无明显太阳和地磁扰动时,热层大气密度的主要变化之一是日照和阴影区域之间的涨落变化,最大涨落变化比约为3.0,变化比与太阳和地磁活动程度有关.在2002-04-17和2002-04-19的强地磁扰动时,全球热层大气密度上涨,同时在磁扰峰期探测获得30°N-40°N区域出现密度扰动异常现象.对强地磁扰动在运行轨道高度上大气密度最大涨幅约为60%左右,响应过程在时间上要比地磁扰动过程滞后6-7h,日照和阴影区域中大气密度的响应变化程度明显不同.在太阳活动程度发生变化时,热层大气密度会呈现出明显的正相关变化关系. 相似文献
2.
S. Kodaira R.V. Tolochek I. Ambrozova H. Kawashima N. Yasuda M. Kurano H. Kitamura Y. Uchihori I. Kobayashi H. Hakamada A. Suzuki I.S. Kartsev E.N. Yarmanova I.V. Nikolaev V.A. Shurshakov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The dose reduction effects for space radiation by installation of water shielding material (“protective curtain”) of a stack board consisting of the hygienic wipes and towels have been experimentally evaluated in the International Space Station by using passive dosimeters. The averaged water thickness of the protective curtain was 6.3 g/cm2. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Totally 12 passive dosimeter packages were installed in the Russian Service Module during late 2010. Half of the packages were located at the protective curtain surface and the other half were at the crew cabin wall behind or aside the protective curtain. The mean absorbed dose and dose equivalent rates are measured to be 327 μGy/day and 821 μSv/day for the unprotected packages and 224 μGy/day and 575 μSv/day for the protected packages, respectively. The observed dose reduction rate with protective curtain was found to be 37 ± 7% in dose equivalent, which was consistent with the calculation in the spherical water phantom by PHITS. The contributions due to low and high LET particles were found to be comparable in observed dose reduction rate. The protective curtain would be effective shielding material for not only trapped particles (several 10 MeV) but also for low energy galactic cosmic rays (several 100 MeV/n). The properly utilized protective curtain will effectively reduce the radiation dose for crew living in space station and prolong long-term mission in the future. 相似文献
3.
T.C. Slaba G.D. Qualls M.S. Clowdsley S.R. Blattnig S.A. Walker L.C. Simonsen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
To estimate astronaut health risk due to space radiation, one must have the ability to calculate various exposure-related quantities that are averaged over specific organs and tissue types. Such calculations require computational models of the ambient space radiation environment, particle transport, nuclear and atomic physics, and the human body. While significant efforts have been made to verify, validate, and quantify the uncertainties associated with many of these models and tools, relatively little work has focused on the uncertainties associated with the representation and utilization of the human phantoms. In this study, we first examine the anatomical properties of the Computerized Anatomical Man (CAM), Computerized Anatomical Female (CAF), Male Adult voXel (MAX), and Female Adult voXel (FAX) models by comparing the masses of various model tissues used to calculate effective dose to the reference values specified by the International Commission on Radiological Protection (ICRP). The MAX and FAX tissue masses are found to be in good agreement with the reference data, while major discrepancies are found between the CAM and CAF tissue masses and the reference data for almost all of the effective dose tissues. We next examine the distribution of target points used with the deterministic transport code HZETRN (High charge (Z) and Energy TRaNsport) to compute mass averaged exposure quantities. A numerical algorithm is presented and used to generate multiple point distributions of varying fidelity for many of the effective dose tissues identified in CAM, CAF, MAX, and FAX. The point distributions are used to compute mass averaged dose equivalent values under both a galactic cosmic ray (GCR) and solar particle event (SPE) environment impinging isotropically on three spherical aluminum shells with areal densities of 0.4 g/cm2, 2.0 g/cm2, and 10.0 g/cm2. The dose equivalent values are examined to identify a recommended set of target points for each of the tissues and to further assess the differences between CAM, CAF, MAX, and FAX. It is concluded that the previously published CAM and CAF point distributions were significantly under-sampled and that the set of point distributions presented here should be adequate for future studies involving CAM, CAF, MAX, or FAX. It is also found that the errors associated with the mass and location of certain tissues in CAM and CAF have a significant impact on the mass averaged dose equivalent values, and it is concluded that MAX and FAX are more accurate than CAM and CAF for space radiation analyses. 相似文献
4.
5.
6.
7.
空间带电粒子对在轨航天器会产生辐照剂量效应,严重时可导致星载设备及航天器等的性能衰减及寿命下降,因此采用了星内多点多方位的辐照总剂量探测技术.在中国首次采用深度剂量监测方案.每个探头设置5个剂量监测点,对应屏蔽厚度分别为0(开窗),1mm,2.5mm,3.5mm,6mm的铝结构,探测剂量总量程为2×106rad (Si),最高灵敏度为1rad (Si).所设计的星载辐照剂量深度分布探测仪可以对卫星在轨遭受的辐照剂量进行实时监测和预警,其探测结果用于研究星内剂量深度分布,对卫星载荷在轨工作状态进行分析评估,并为后续卫星的抗辐照加固设计提供依据. 相似文献
8.
Samy El-Jaby Brent J. Lewis Leena Tomi 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The International Space Station Cosmic Radiation Exposure Model (ISSCREM) has been developed as a possible tool for use in radiation mission planning as based on operational data collected with a tissue equivalent proportional counter (TEPC) aboard the ISS since 2000. It is able to reproduce the observed trapped radiation and galactic cosmic radiation (GCR) contributions to the total dose equivalent to within ±20% and ±10%, respectively, as would be measured by the onboard TEPC at the Zvezda Service Module panel 327 (SM-327). Furthermore, when these contributions are combined, the total dose equivalent that would be measured at this location is estimated to within ±10%. The models incorporated into ISSCREM correlate the GCR dose equivalent rate to the cutoff rigidity magnetic shielding parameter and the trapped radiation dose equivalent rate to atmospheric density inside the South Atlantic Anomaly. The GCR dose equivalent rate is found to vary minimally with altitude and TEPC module location however, due to the statistics and data available, the trapped radiation model could only be developed for the TEPC located at SM-327. Evidence of the variation in trapped radiation dose with detector orientation and the East–West asymmetry were observed at this location. 相似文献
9.
S.A. Washburn S.R. Blattnig R.C. Singleterry S.C. Westover 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA’s radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than ∼15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent. 相似文献
10.
Myung-Hee Y. Kim Garry D. Qualls Tony C. Slaba Francis A. Cucinotta 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
For the evaluation of organ dose and dose equivalent of astronauts on space shuttle and the International Space Station (ISS) missions, the CAMERA models of CAM (Computerized Anatomical Male) and CAF (Computerized Anatomical Female) of human tissue shielding have been implemented and used in radiation transport model calculations at NASA. One of new human geometry models to meet the “reference person” of International Commission on Radiological Protection (ICRP) is based on detailed Voxel (volumetric and pixel) phantom models denoted for male and female as MAX (Male Adult voXel) and FAX (Female Adult voXel), respectively. We compared the CAM model predictions of organ doses to those of MAX model, since the MAX model represents the male adult body with much higher fidelity than the CAM model currently used at NASA. Directional body-shielding mass was evaluated for over 1500 target points of MAX for specified organs considered to be sensitive to the induction of stochastic effects. Radiation exposures to solar particle event (SPE), trapped protons, and galactic cosmic ray (GCR) were assessed at the specific sites in the MAX phantom by coupling space radiation transport models with the relevant body-shielding mass. The development of multiple-point body-shielding distributions at each organ made it possible to estimate the mean and variance of organ doses at the specific organ. For the estimate of doses to the blood forming organs (BFOs), data on active marrow distributions in adult were used to weight the bone marrow sites over the human body. The discrete number of target points of MAX organs resulted in a reduced organ dose and dose equivalent compared to the results of CAM organs especially for SPE, and should be further investigated. Differences of effective doses between the two approaches were found to be small (<5%) for GCR. 相似文献
11.
Samy El-Jaby Leena Tomi Lembit Sihver Tatsuhiko Sato Richard B. Richardson Brent J. Lewis 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
This paper describes a methodology for assessing the pre-mission exposure of space crew aboard the International Space Station (ISS) in terms of an effective dose equivalent. In this approach, the PHITS Monte Carlo code was used to assess the particle transport of galactic cosmic radiation (GCR) and trapped radiation for solar maximum and minimum conditions through an aluminum shield thickness. From these predicted spectra, and using fluence-to-dose conversion factors, a scaling ratio of the effective dose equivalent rate to the ICRU ambient dose equivalent rate at a 10 mm depth was determined. Only contributions from secondary neutrons, protons, and alpha particles were considered in this analysis. 相似文献