首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study.  相似文献   

2.
Any comprehensive evaluation of Life Support Systems (LSS) for space applications has to be conducted taking into account not only mass of LSS components but also all relevant equipment and storage: spare parts, additional mass of space ship walls, power supply and heat rejection systems. In this paper different combinations of hybrid LSS (HLSS) components were evaluated. Three variants of power supply were under consideration--solar arrays, direct solar light transmission to plants, and nuclear power. The software based on simplex approach was used for optimizing LSS configuration with respect to its mass. It was shown that there are several LSS configuration, which are optimal for different time intervals. Optimal configurations of physical-chemical (P/C), biological and hybrid LSS for three types of power supply are presented.  相似文献   

3.
针对柔性基座冗余机械臂的末端轨迹跟踪问题,提出一种反作用最优控制方法,该算法将轨迹跟踪视为高优先级任务,而反作用优化控制在高优先级任务零空间内进行。由于冗余机械臂的自运动能在不影响末端运动的前提下改变关节运动,利用冗余机械臂的自运动消除振动系统中的低阶模态力,使机械臂在完成轨迹跟踪的同时激起的弹性振动大幅减小,从而提高了系统的稳定性。以平面3自由度柔性基座机械臂和空间7自由度柔性基座机械臂为例进行数值仿真,证实了方法的有效性。  相似文献   

4.
Using conventional means of process development, it would take decades and hundreds of millions of dollars to develop technology for recycling of water and solid waste for lunar missions within the next thirty years. Since we anticipate neither that amount of time nor level of funding, new methodologies for developing life support systems (LSS) technologies are essential. Computerized modeling and simulation (CMAS) is a tool that can greatly reduce both the time and cost of technology development. By CMAS, we refer to computer methods for correlating, storing and retrieving property data for chemical species and for solving the phenomenological equations of physical/chemical processes (i.e., process conditions based on properties of materials and mass and energy balances, equipment sizing based on rate processes and the governing equations for unit operations). In particular, CMAS systems can be used to evaluate a LSS process design with minimal requirements for laboratory experimentation. A CMAS model using ASPEN PLUS is presented for a vapor compression distillation (VCD) system designed for reclaiming water from urine.  相似文献   

5.
Mars mission like the Lunar base is the first venture to maintain human life beyond earth biosphere. So far, all manned space missions including the longest ones used stocked reserves and can not be considered egress from biosphere. Conventional path proposed by technology for Martian mission LSS is to use physical-chemical approaches proved by the experience of astronautics. But the problem of man living beyond the limits of the earth biosphere can be fundamentally solved by making a closed ecosystem for him. The choice optimum for a Mars mission LSS can be substantiated by comparing the merits and demerits of physical-chemical and biological principles without ruling out possible compromise between them. The work gives comparative analysis of ecological and physical-chemical principles for LSS. Taking into consideration universal significance of ecological problems with artificial LSS as a particular case of their solution, complexity and high cost of large-scale experiments with manned LSS, it would be expedient for these works to have the status of an International Program open to be joined. A program of making artificial biospheres based on preceding experience and analysis of current situation is proposed.  相似文献   

6.
One of the key problems of long-term space missions is limited service life of units. The only exceptions are biological components of biological Life Support Systems--higher plants or microorganisms. These components are capable of self-restoration: after complete disintegration, they can appear again from seeds or spores. The estimate of failure intensity of BLSS regeneration component includes: a number of self-sustained sections of the regeneration component; permissible boost (how many times can productivity of a component be increased); time required to repair (restore) a component; the crew existence time, when all LSS regeneration components fail; failure rate of one section of a regeneration component. Evaluations show that for hydrogen-oxidizing bacteria and micro-algae very high reliability is achieved even for one or two sections. In the case of higher plants (due to low rate of self-restoration) bio-regenerative module has to be divided into 10 self-sustained sections operating simultaneously. These measures can decrease the probability of catastrophe by a factor of 10(6).  相似文献   

7.
The problem of interaction between man and microorganisms in closed habitats is an inextricable part of the whole problem of co-existence between macro- and microorganisms. Concerning the support of human life in closed habitat, we can, conventionally, divide microorganisms, acting in life support system (LSS) into three groups: useful, neutral and harmful. The tasks, for human beings for optimal coexistence with microhabitants seem to be trivial: (1) to increase the activity of useful forms, (2) decrease the activity harmful forms, (3) not allow the neutral forms to become the harmful ones and even to help them to gain useful activity. The task of efficient management and control of microbial population's development in LSS highly depends on mission duration. As for short-term missions without recycling, the proper hygienic procedures are developed. For longer missions, the probability of transformation of the neutral forms into the harmful ones is becoming more dangerous. The LSS for long-term missions are to use cycling-recycling systems, including system with biological recycling. In these systems, microbial populations as regenerative link should be useful and active agents. Some problems of microbial populations control and management are discussed in the paper.  相似文献   

8.
Catalytic combustion of inedible biomass of plants in ecological Life Support Systems (LSS) gives rise to gaseous oxides (CO2, NO2, SO2, etc.). Some of them are toxic for plants suppressing their photosynthesis and productivity. Experiments with "Bios-3" experimental LSS demonstrate that a decrease of photosynthetic productivity in a system with straw incineration can jeopardize its steady operation. Analysis of the situation by a mathematical model taking into account absorption parameters of the system in terms of toxic elements makes it possible to formulate requirements for the structure and operation of LSS to provide for its stability. Avenues for further investigation of the problem of toxic stability of LSS are proposed.  相似文献   

9.
Liquid human wastes and household water used for nutrition of wheat made possible to realize 24% closure for the mineral exchange in an experiment with a 2-component version of "Bios-3" life support system (LSS) Input-output balances of revealed, that elements (primarily trace elements) within the system. The structural materials (steel, titanium), expanded clay aggregate, and catalytic furnace catalysts. By the end of experiment, the permanent nutrient solution, plants, and the human diet gradually built up Ni, Cr, Al, Fe, V, Zn, Cu, and Mo. Thorough selection and pretreatment of materials can substantially reduce this accumulation. To enhance closure of the mineral exchange involves processing of human-metabolic wastes and inedible biomes inside LSS. An efficient method to oxidize wastes by hydrogen peroxide icon a quartz reactor at the temperature of 80 degrees C controlled electromagnetic field is proposed.  相似文献   

10.
Any attempt to create LSS for practical applications must take into account the possibility of castastrophic consequences if the problem of LSS reliability and stability is not solved. An integrated conception of CELSS studies development as a possible way to increase its reliability is considered. The BIOS-4 facility project is developed in the context of the conception. Three principles of highly effective experimental CELSS facility design are proposed. Some details of BIOS-4 design and its exploitation features are presented.  相似文献   

11.
The life support systems (LSS) for long-term missions are to use cycling-recycling systems, including biological recycling. Higher plants are the traditional regenerator of air and producer of food. They should be used in many successive generations of their reproduction in LSS.  相似文献   

12.
Waste technologies for Mars missions have been analyzed, considering equivalent system mass and interface loads. Storage or dumping seems most appropriate for early missions with low food closure. Composting or other treatment of inedible biomass in a bioreactor seems most attractive for moderate food closure (50-75%). Some form of physicochemical oxidation of the composted residue might be needed for increased food closure, but oxidation of all waste does not seem appropriate due to excess of production of carbon dioxide over demand. More comprehensive analysis considering interfaces with other mission systems is needed. In particular, in-situ resource utilization is not considered, and might provide resources more cheaply than waste processing.  相似文献   

13.
介绍在STEP/AP203标准语义模型共享为基础的CAD/CAM系统集成中,一般几何表示的设计原理与方法.STEP标准提供了以面向对象为基础的软组件结构实现的可能,因而,扩大了CAD/CAM集成系统在面向需求变化中的开放性.文中给出了一般框架, 允许采用不同的图形包几何表达AP203语义模型.  相似文献   

14.
刚体卫星的大角度姿态机动可以用常规的四元数反馈控制,当挠性帆板的振动和中心刚体的耦合系数很大时,大角度快速机动后姿态的稳定度较差.结合特征建模理论,设计一种卫星大角度机动的黄金分割控制算法,对三轴带挠性帆板的航天器姿态机动进行仿真,仿真结果表明,机动完成后的控制精度比四元数反馈控制方法的精度高一个数量级以上。  相似文献   

15.
Mass balances for a biological life support system simulation model.   总被引:1,自引:0,他引:1  
Design decisions to aid the development of future space-based biological life support systems (BLSS) can be made with simulation models. Here we develop the biochemical stoichiometry for 1) protein, carbohydrate, fat, fiber, and lignin production in the edible and inedible parts of plants; 2) food consumption and production of organic solids in urine, feces, and wash water by the humans; and 3) operation of the waste processor. Flux values for all components are derived for a steady-state system with wheat as the sole food source. The large-scale dynamics of a materially-closed (BLSS) computer model is described in a companion paper. An extension of this methodology can explore multi-food systems and more complex biochemical dynamics while maintaining whole-system closure as a focus.  相似文献   

16.
基于约束线图对超导重力梯度敏感结构进行型综合,分析轴向分量与交叉分量单独敏感的结构自由度与约束线图,并结合超导重力梯度测量应用提出两分量同时敏感的结构,利用自由度与约束线图确定约束类型,等效为柔性圆柱副,并选择柔性元件进行并联机构形式的布局.在型综合的基础上,通过模态仿真对比,得到两端与柔性球铰联接的刚性杆结构适于在两分量敏感结构中应用的结论.刚度特性仿真分析结果表明两分量敏感结构具有设计运动方向刚度小、寄生运动方向刚度大、运动耦合小的特点,适于在超导重力梯度测量系统中应用.  相似文献   

17.
Regenerative life support systems based on the use of biological material have been considered for inclusion in manned spacecraft since the early days of the United States space program. These biological life support systems are currently being developed by NASA in the Controlled Ecological Life Support System (CELSS) program. Because of the progress being achieved in the CELSS program, it is time to determine which space missions may profit from use of the developing technology. This paper presents the results of a study that was conducted to estimate where potential transportation cost savings could be anticipated by using CELSS technology for selected future manned space missions.

Six representative missions were selected for study from those included in NASA planning studies. The selected missions ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The paper presents the analytical study approach and describes the missions and systems considered, together with the benefits derived from CELSS when applicable.  相似文献   


18.
A new type of space debris in near geosynchronous orbit (GEO) was recently discovered and later identified as exhibiting unique characteristics associated with high area-to-mass ratio (HAMR) objects, such as high rotation rates and high reflection properties. Observations have shown that this debris type is very sensitive to environmental disturbances, particularly solar radiation pressure, due to the fact that its motion depends on the actual effective area, orientation of that effective area, reflection properties and the area-to-mass ratio of the object is not stable over time. Previous investigations have modelled this type of debris as rigid bodies (constant area-to-mass ratios) or discrete deformed body; however, these simplifications will lead to inaccurate long term orbital predictions. This paper proposes a simple yet reliable model of a thin, deformable membrane based on multibody dynamics. The membrane is modelled as a series of flat plates, connected through joints, representing the flexibility of the membrane itself. The mass of the membrane, albeit low, is taken into account through lump masses at the joints. The attitude and orbital motion of this flexible membrane model is then propagated near GEO to predict its orbital evolution under the perturbations of solar radiation pressure, Earth’s gravity field (J2), third body gravitational fields (the Sun and Moon) and self-shadowing. These results are then compared to those obtained for two rigid body models (cannonball and flat rigid plate). In addition, Monte Carlo simulations of the flexible model by varying initial attitude and deformation angle (different shape) are investigated and compared with the two rigid models (cannonball and flat rigid plate) over a period of 100?days. The numerical results demonstrate that cannonball and rigid flat plate are not appropriate to capture the true dynamical evolution of these objects, at the cost of increased computational time.  相似文献   

19.
针对柔性空间机械臂在轨服务应用需求,提出一种基于刚体运动与柔性振动相耦合的空间双臂机器人协同控制方法.首先引入空间位姿变量的概念,构造出面向协同控制目标的Jacobian矩阵,建立柔性空间机器人系统的刚柔耦合动力学模型,基于指定的最小距离得到其运动学逆解,并根据系统动量矩守恒关系及系统的Jacobian矩阵,并根据机械臂末端的运动速度,然后采用阻尼最小二乘法得出关节角度,使柔性空间机器人能够有效完成协同控制和空间避障任务,并基于RecurDyn V7R5软件环境验证算法的正确性.最后,基于SolidWorks和ADAMS虚拟样机建立柔性空间机器人系统的立体CAD模型,并结合空间在轨搬运任务进行模拟仿真,柔性空间机器人关节操作和运动轨迹的仿真结果图验证了本文算法的有效性.  相似文献   

20.
This paper investigates a boundary control scheme of a spacecraft with double flexible appendages under prescribed performance. The flexible spacecraft system comprises a rigid central hub and two flexible appendages regarded as continuum models, so that the motion of the system can be portrayed by using partial differential equations (PDEs). In this paper, only one control torque and two control forces are applied to guarantee the desired attitude angle of the spacecraft and simultaneously suppress the vibration of the two flexible appendages. Moreover, the angle tracking error of the spacecraft can be restricted in a small residual set under a minimum convergence rate by adopting the prescribed performance technique (PPT). The stability of the boundary control is analyzed by employing LaSalle’s invariance principle. Finally, the feasibility of the proposed controller is verified through numerical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号