首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
微型扑翼体积小、重量轻,其柔性变形对气动特性有显著的影响。通过求解雷诺平均N-S方程(ReynoldsAveraged Navier-Stokes,RANS)和结构动力学方程,对微型柔性扑翼飞行器的气动结构耦合特性进行了数值模拟研究。针对微型扑翼的大幅运动,发展了适用于扑翼的气动结构耦合数值计算方法,研究了微型扑翼的气动结构耦合特性。通过求解雷诺平均Navier-Stokes(RANS)方程得到微型扑翼的非定常气动特性;利用哈密顿原理(Hamilton Principle)推导了扑翼的结构动力学方程,采用结构有限元方法对该动力学方程进行离散并求解,得到扑翼的动态结构特性;采用松耦合方法进行迭代。计算结果与风洞实验结果相比吻合良好,验证了所发展方法的有效性。在此基础上研究了惯性力和关键运动参数对柔性扑翼气动及结构特性的影响规律,有助于比较详细、全面地了解微型扑翼的气动机理,为柔性扑翼的设计提供了参考依据。  相似文献   

2.
李正洲  贺元元  高昌  张小庆  王琪 《航空学报》2020,41(5):623356-623356
气动外形设计是有翼再入飞行器(RV-W)的关键技术之一。分析了气动参数对再入飞行性能的影响,探讨了有翼再入飞行器气动外形设计的规律和准则。基于上述设计准则,以类X-37B飞行器为研究对象,集成几何参数化建模、气动力、气动热、热防护等学科快速分析方法,采用多学科设计优化方法,以最优气动特性为目标对飞行器气动外形进行了优化;得到优化气动外形后,对飞行器热防护系统(TPS)进行了轻量化设计优化。结果表明,优化外形的气动特性相比初始外形得到了较大的提升,设计优化得到的热防护系统重量占比(8.7%)优于同类飞行器的热防护系统重量占比统计数据,说明了本文有翼再入飞行器气动外形集成设计优化方法的有效性,可为同类飞行器提供参考。  相似文献   

3.
以扇翼的气动特性(高升力)为关注焦点,对扇翼流动的流场结构细节进行了数值模拟研究。对有推力二维Lockheed C-141超临界翼型进行数值模拟,验证和确认了扇翼流场的数值模拟方法,并数值模拟了扇翼旋转时的流场结构。结果表明,其高升力来源于固定翼部分上表面高速流动的射流,而这种射流正是由叶片旋转带动扇翼内部流体不断加速喷射得到的。扇翼内部的流动是复杂的非定常流动,存在多种尺度的旋涡、湍流边界层及二者的相互干扰等,使气动力高频振荡,进而可以预测相当的气动噪声是不可避免的。将算法应用于扇翼飞行器的外形设计优化阶段,得到了若干构型的气动性能,为下一步开展的无人机研制工作提供了指导。  相似文献   

4.
半转扇翼是基于半转机构的一种新型活动性叶轮扇翼,其叶轮运动原理不同于普通扇翼的固定叶轮,为使其在工作时获得较优的气动力,需要对不同结构参数与运动参数下的半转扇翼进行具体探究。本文通过数值计算方法对半转扇翼叶轮偏角、底槽相位与叶片数目的影响做了详细的计算与剖析,并对比分析了不同来流速度与转速对半转扇翼气动特性的影响。计算结果表明:叶轮偏角是影响扇翼升推力的主要因素,其在20°~40°时取得较佳气动力效果;不同底槽前后缘开口角(φ,β)下扇翼的气动特性也有所差异,使用C (φ<β)型与U (φ=β)型底槽的机翼具有较好的综合气动特性优势;叶片数目亦对扇翼的气动力有所影响,叶片数目在10~14时足以达到半转扇翼的气动力需求。与固定叶轮扇翼相比,半转扇翼在同样转速与来流速度下能产生与之相近的气动力,从而明确了半转扇翼拥有良好的基本气动特性。  相似文献   

5.
扇翼飞行器机翼设计与研究   总被引:2,自引:0,他引:2  
扇翼飞行器是近年来发展起来的低速大载荷飞行器,本文介绍课题组在过去的两年里通过数学推理、数值计算和风洞试验三种手段对扇翼飞行器进行了研究。通过数学模型了解扇翼飞行器的原理,在原理的指导下进行数值计算。将计算结果指导应用于风洞试验,风洞试验验证理论计算,最终通过这些方法的应用得出一套性能优良的机翼布局方案,笔者也希望这些方法的应用能够给大家一些启发。  相似文献   

6.
由于微型扑翼飞行器具有体积小、重量轻等特点,在飞行过程中会产生明显的柔性变形,因此在对扑翼气动特性进行数值模拟时,有必要考虑柔性变形的影响。基于结构动力学理论,发展了一种适用于扑翼全机气动结构耦合特性的数值模拟方法与一种适用于扑翼的结构动力学求解方法。方法利用哈密顿原理,对动能和应变能进行变分,进而得到扑翼动力学方程,采用结构有限元方法对运动方程进行离散并求解;采用基于嵌套网格的CFD求解器对微型扑翼全机非定常绕流进行数值模拟。采用CFD/CSD耦合求解器对微型扑翼飞行器全机气动结构耦合特性进行数值模拟,分析了结构变形对柔性扑翼气动特性的影响,并分别对扑动过程中刚性扑翼和柔性扑翼的压心变化范围进行研究,分析了结构变形对柔性扑翼稳定性的影响。  相似文献   

7.
通用航空飞行器参数化建模及气动特性分析   总被引:3,自引:0,他引:3  
提出一种新的通用航空飞行器布局方案。应用基于二次曲线的模线设计方法,构造通用航空飞行器翼身组合体的布局方案。通过二次曲线的控制点和形状参数实现参数化外形建模,提高了布局方案设计的效率,为进一步的气动特性计算和布局方案设计优化奠定了基础。采用修正的牛顿流理论和一阶平面面元法,对通用航空飞行器进行高超声速气动特性计算,并对其飞行轨迹进行了仿真和优化。计算结果验证了通用航空飞行器布局方案的合理性,显示了参数化外形建模方法在通用航空飞行器布局选择和进一步深入研究中的实用性。  相似文献   

8.
采用双时间步方法求解三维可压缩非定常N-S方程,数值模拟了微型飞行器低雷诺数矩形扑翼的非定常绕流,首先将得到的结果与文献进行了对比,数据间具有较好的一致性.然后针对不同的展弦比、减缩频率及初始攻角,计算了矩形扑翼的非定常气动特性及表面流态和动态压力分布,并分析了翼尖涡对扑翼非定常气动特性的影响.  相似文献   

9.
DPWⅢ机翼和翼身组合体构型数值模拟   总被引:1,自引:0,他引:1  
采用亚跨超CFD软件平台(TRIP)数值模拟了DPW Ⅲ提供的DPW_W1/W2两种机翼构型和DPW-F6/F6_FX2B两种翼身组合体构型,主要目的是通过两种机翼构型和两种翼身组合体构型的数值模拟,研究网格密度对运输机构型气动特性计算结果的影响。数值模拟采用的多块对接网格来自AIAA CFD Drag Prediction Workshop Ⅲ(DPW Ⅲ),采用National Transonic Facility(NTF)的试验结果和CFL3D的计算结果作对比。详细研究了网格密度对两种机翼构型和翼身组合体的总体气动特性和压力分布的影响。采用SST两方程模型计算两种构型均得到了网格收敛结果,网格密度主要影响压差阻力而对摩擦阻力影响较小,计算结果较好地预测了机翼和翼身组合体外形优化前后总体气动特性的变化量。  相似文献   

10.
针对实际飞行中无法直接测量的扑翼飞行器气动参数辨识问题,结合刚体六自由度模型,提出一种基于迭代学习和人工鱼群法的扑翼飞行器隐式气动参数辨识方法。鉴于扑翼飞行器飞行试验中待辨识气动参数值难以直接测量、导致一般辨识算法中梯度难以求解的问题,提出基于摄动法的梯度方向寻优方法。考虑到待辨识参数数量及辨识结果对参数初始值的敏感性,该方法采用人工鱼群算法优化计算待辨识参数初始值。且针对迭代过程中损失函数易陷入局部最优和优化速度受限问题,采用变学习因子迭代学习策略。试验结果表明,所提出的算法能有效估算出扑翼飞行器气动参数。  相似文献   

11.
史振海  杨未柱  路秀儒  岳珠峰 《航空学报》2016,37(10):2922-2931
扇翼能够通过前缘横流风扇的高速旋转对前方来流进行加速和重新整流。利用这一特点提出了一种串列式扇翼布局,其由一定间距和空间高度分布的前后双排或多排扇翼组成,并基于二维模型对该布局开展了流动数值模拟,分析得到了不同前后间距、高度差以及排数下串列式扇翼布局的升力和推力特性。结果表明,相对单个扇翼,在合适的设计参数下串列式扇翼可得到更大的单排平均升力和推力,其中间距一倍风扇直径的四排扇翼平均升力和推力分别提高了约10%和30%。基于扇翼附近流场分布和翼型上下表面压强分布,分析了引起升力和推力提升的原因。该研究可为未来设计具有更好低速大载荷特性的扇翼飞行器提供参考。  相似文献   

12.
可折叠翼变形飞行器气动特性研究   总被引:1,自引:0,他引:1  
本文设计了一种可折叠翼概念无人机的变形飞行器模型,提出了一种变形飞行器气动系数的定义,通过数值计算,对比了飞行器变形前后以及不同内翼折角状态下的气动特性,分析了飞行器气动系数与内翼折角、迎角以及飞行马赫数的变化关系。  相似文献   

13.
复合无人飞行器气动特性研究   总被引:1,自引:0,他引:1  
基于对复合无人飞行器三维流场数值模拟计算,比较分析了串列翼布局方案和单机翼布局方案复合无人飞行器在巡航状态下的气动性能优劣.分析了串列翼系统中前后翼气动特性上的差别,前翼的气动效率要高于后翼,前翼要先于后翼失速.研究了前后翼垂直相对距离对串列翼气动性能的影响.计算了不同迎角下全机的气动力系数,通过分析机身和机翼对全机气动力贡献情况,建议对于复合无人飞行器气动设计,机翼设计以获得较大的升力系数为目标,机身设计以获得最小的阻力系数为目标.  相似文献   

14.
介绍了基于流体力学和电磁学方程数值求解的飞行器气动隐身一体化设计方法.首先介绍了精度相对较高的飞行器气动和隐身特性数值计算方法,即,对于气动性能计算,求解的是结构网格上的NS方程加BL代数湍流模式;对于隐身特性计算,是用时域有限体积法来求解电磁学微分方程以获取RCS值.由于采用了高精度的数值方法,优化时单一设计点的气动性能计算和隐身性能计算变得较为耗时,因此在进行多目标遗传算法优化时本文采用了一种"少量样本计算+Kriging响应面模型建模"的优化策略.针对某类似X-47飞行器的一体化设计算例计算表明,上述设计方法是可行的,实现了优化设计中引入高精度的性能分析方法,有望提高优化结果的可信度.  相似文献   

15.
通过低速风洞试验研究了使用双翼布局改善固定翼微型飞行器(MAV)气动性能的问题。首先比较不同平面形状单翼(齐莫曼翼和反齐莫曼翼)与双翼布局的气动特性。在此基础上为了优化低雷诺数范围内的双翼布局,研究不同几何参数对气动特性的影响,包括双翼不同的翼间距和交错位置以及不同的上下翼平面形状,并分析了造成这种气动性能差异可能存在的流场相互作用机理。研究表明,双翼布局能够改善单翼微型飞行器的气动性能,双翼之间的相对几何位置对其气动特性影响很大。通过不同平面形状上翼与下翼组合的比较发现,就最大升力和升阻比而言,上翼为齐莫曼翼、下翼为反齐莫曼翼且上翼位于下翼上游的布局较优。  相似文献   

16.
参考国内外高升阻比飞行器气动布局设计经验,针对进出空间飞行器的气动特性要求,开展跨速域高升阻比融合升力体气动布局(BLB)研究以适应进出空间飞行器的各种要求,在传统的翼/身外形的气动效率与纯升力体高容量效率之间寻求平衡。研究表明通过构建融合升力体数模,研究气动外形的系统参数化描述方法,选择设计变量及变化范围,研究优化算法,建立融合升力体气动布局设计及优化工具,开展融合升力体气动外形优化设计是一种值得深入探讨的研究方法。本文主要通过优化平台集成数模参数化程序、网格自动化及基于Euler方程的快速流场求解程序进行优化设计并对优化结果进行分析计算,发展了一种快速有效的气动布局优化设计方法,设计了初步满足设计要求的新型高升阻比融合升力体气动布局。设计的新布局能为再入飞行器气动布局设计提供参考,所发展的优化设计方法计算速度快,成本低,可以为走向工程实用化的复杂外形气动布局优化设计打下技术基础。  相似文献   

17.
微型扑翼飞行器的气动特性由扑翼的运动规律所决定,为了研究复杂翼梢轨迹对扑翼气动特性的影响,通过对上下扑动、弦向扭转和前后掠动三个自由度的运动设计不同的参数,运用数值模拟方法研究微型扑翼采用仿生"0"字形和"8"字形运动时的气动特性.结果表明:相比于传统的扑动运动,增加了扫掠运动的"0"字形和"8"字形扑动可有效增加升力,特别是"8"字形扑动的增升效果更加显著,但同时也会造成阻力略增,可以通过调整扭转角度来增加推力.本文的研究结果可为复杂运动规律下微型扑翼飞行器设计提供参考.  相似文献   

18.
类AHW助推滑翔飞行器气动布局优化设计分析   总被引:1,自引:0,他引:1  
AHW作为美国首飞即成功完成高超声速助推滑翔飞行试验的飞行器受到越来越多的关注。本文针对该类钝双锥十字形小尺寸弹翼外形气动布局阶段的共性问题进行了研究。基于参数化方法建立的基本外形和工程气动力估算模型,采用正交设计方法进行了参数敏感性分析,并对正交优化结果进行了数值模拟验证分析,在此基础上利用多目标优化方法完成了弹体布局的进一步优化。同时在优化外形基础上考虑气动特性以及总体和防热需求,对操纵面的类型、质心与操纵面尺寸配置以及操纵效率进行了探讨分析,给出了气动布局建议。研究表明,该类布局方式可以获得较高的配平升力、配平升阻比及容积率,并且合理的质心位置/舵面尺寸的组合可以实现操纵性需求,是高超声速滑翔飞行器的一种潜在布局方案。  相似文献   

19.
刘斌 《飞机设计》2011,31(6):21-26
介绍和分析了国内外栅格翼的研究现状和技术难点。为了详细了解栅格翼气动布局栅格内部的流动特性,以及其与阻力设计满足飞行器性能要求的栅格翼,本文开展了几种不同单栅格形状外形的气动特性数值计算。针对传统数值计算中遇到的栅格翼计算网格生成困难、工作量大的问题,利用非结构空间直角网格对于复杂外形易于生成的特点对单个栅格的外形进行了初步选型研究。对于常规导弹和栅格翼导弹的气动性能进行了对比。  相似文献   

20.
为了提升高超声速飞行器在低速和超声速条件下的气动特性,提出了一种新型宽速域类乘波体机身加可变菱形连接翼的气动构型,飞行器通过连接翼的收放变化来实现展弦比和掠角的增减,提高全速域范围的气动性能。采用CFD方法,对低(超声)速和高超声速时的气动特性进行了数值计算。通过分析计算得出结论:在低速和高超声速时,飞行器的气动特性良好。结果表明,该设计方法是可行的,符合水平起降、宽速域飞行的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号