首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
针对样本数量不足以及工况条件复杂导致故障识别精度低下的问题,提出一种基于马尔科夫转移场与多维监督卷积神经网络(Markov transition field and multidimensional supervised module convolutional neural networks, MTF-MSMCNN)的小样本滚动轴承故障诊断方法。采用MTF编码方式将一维滚动轴承信号转化为二维特征图像,使其保留时间相关性;提出多维监督模块(Multidimensional supervision module, MSM),在空间维度和通道维度监测重要故障特征并自适应赋予权重,提升模型捕捉关键特征的能力;将MSM嵌入到卷积神经网络中,构建出MSMCNN模型;通过试验构建复杂工况条件,将MTF图像输入到所提模型进行故障诊断,并运用两种数据集验证模型有效性。试验结果表明,MTF-MSMCNN在每类故障训练集样本仅有10个且在0 dB噪声污染下故障诊断精度依然可达90%左右,对比其他诊断模型,本文所提方法在小样本、变工况以及噪声干扰条件下具有更高的识别准确率、更强的泛化能力以及抗噪性能。  相似文献   

2.
针对传统故障诊断中提取的特征不具有自适应能力、很难匹配特定故障的问题,提出了一种基于连续小波变换(CWT)和二维卷积神经网络(CNN)的齿轮箱故障诊断方法。该方法对齿轮箱故障振动信号采用连续小波变换构造其时频图,以其为输入构建卷积神经网络模型,通过多层卷积池化形成深层分布式故障特征表达。利用反向传播算法调整网络各层的结构参数,使模型建立从信号特征到故障状态之间的准确映射。在不同工况和不同故障状态下的实验中,故障识别准确率达到了99.2%,验证了方法有效性。采用这种自适应学习信号中丰富的信息的方法,可以为故障诊断智能化提供基础。   相似文献   

3.
针对航空发动机飞行过程数据,结合门控循环单元(GRU)动态网络和深度神经网络(DNN),提出了一种数据驱动的航空发动机故障诊断结构。首先,从飞行数据中抽取发动机健康数据,并通过一组GRU网络建立发动机在健康状态下的动态模型。其次,通过GRU动态模型的预测值与真实测量信号生成残差信号,残差信号作为DNN网络的输入预测发动机健康参数。最后,通过诊断决策模块实现对发动机的故障检测与识别。使用仿真生成的真实飞行工况数据集对提出的故障诊断系统进行了验证。结果表明,相比于直接使用传感器测量数据,基于GRU网络的残差结构能够大幅提升故障检测和识别性能,故障检测和识别准确率分别可达96.51%和95.06%,并且对训练数据样本数量的依赖性较小,较少的训练样本也能获得很好的预测结果。  相似文献   

4.
为保护航空发动机数据集包含的众多敏感数据,将差分隐私技术融入卷积神经网络中,提出一种具有差分隐私的卷积神经网络故障检测模型(DP-CNN模型)。阐述了卷积神经网络和差分隐私技术的基本理论和计算步骤,采用差分隐私随机梯度算法更新神经网络参数以建立DP-CNN模型。运用DP-CNN模型对航空发动机喘振故障进行检测,并与其他故障检测模型(支持向量机,长短时记忆网络,多层感知器)的检测结果进行对比。结果表明,DP-CNN模型在准确率、召回率以及f1-sc ore上都更高,分别达到了95.3%、94.6%和96.5%。  相似文献   

5.
针对飞机起落架液压系统故障诊断精度低,深层故障特征提取困难的问题,提出了一种基于双路特征融合卷积神经网络(TSFFCNN)与粒子群优化支持向量机(PSO-SVM)结合的起落架液压系统故障诊断模型。该诊断模型以起落架多节点压力信号作为输入,采用一维卷积神经网络(1DCNN)与二维卷积神经网络(2DCNN)并行多通道网络结构自适应提取深层特征信息,并在融合层将深层特征信息融合,通过优化后的SVM分类器对融合特征进行故障分类。为验证所提诊断模型的故障分类效果,基于AMESim搭建了典型飞机起落架液压系统仿真模型,构建了几种典型故障类型数据集。基于仿真数据的诊断结果表明,所提故障诊断算法精度能达到99.37%,能够有效实现起落架液压系统故障诊断;与其他智能算法对比,基于TSFFCNNPSO-SVM故障诊断模型具有更好的平稳性与可靠性,诊断精度更高。  相似文献   

6.
航空机载设备的可靠性对航空运输安全至关重要。针对航空机载设备上的滚动轴承故障,本文提出一种声学信号与视觉转换器(ViT)相结合的滚动轴承故障诊断方法。首先,将采样获得的滚动轴承声信号通过短时傅里叶变换转换为时频图。其次,将时频图按时序分割,作为ViT的输入。ViT通过多注意力机制提取图像块中的信息并输出数据。最后,输出数据通过多层感知机实现对不同类别的滚动轴承故障识别。试验表明,相较于传统的基于卷积神经网络和长短时记忆网络的滚动轴承故障诊断方法,本文所提方法的滚动轴承故障诊断准确率更高,为航空机载设备的轴承故障诊断提供了一类新方法。  相似文献   

7.
基于卷积门控循环网络的滚动轴承故障诊断   总被引:2,自引:2,他引:0  
杨平  苏燕辰 《航空动力学报》2019,34(11):2432-2439
针对许多基于深度学习的滚动轴承故障诊断方法在小样本数据集下诊断性能下降的问题,提出一种基于卷积门控循环神经网络的轴承故障诊断模型。该模型使用两层的卷积网络来从输入信号中提取特征,同时使用tanh函数作为激活函数,且池化层使用大池化核来进行重叠下采样。将所提取得到的高层特征连接到双向门控循环网络。合并循环网络正向和逆向的最后一个状态,并连接一层全连接层进行输出。选用凯斯西储大学的轴承故障数据集来验证模型在小样本数据集下的诊断性能,实验结果表明,相比于其他类型的模型,该模型在仅有20个训练样本的情况下依然保持97%的识别准确率。   相似文献   

8.
介绍了双向联想记忆(BAM)学习算法神经网络和误差后向传播(BP)神经网络在数控系统故障诊断中的应用实例。这两种神经网络在数控系统故障诊断方面都有着重要的应用价值,都能实现故障的联想、容错、自学习等功能。但因为各自具有的特点不同,又使得BP网络更适于故障样本多的情况,而BAM则适于要求对错误的故障征兆进行纠错的故障诊断系统  相似文献   

9.
航空发动机的健康稳定对于保障飞行器的安全运行具有重要的作用,针对各台发动机建立具备高准确率的智能诊断模型是飞行器稳定运行的关键。现有故障诊断方法在具备故障数据的条件下能取得较好效果,但实际应用中往往因仅含正常数据,无法实现诊断模型的构建。针对该问题,提出一种故障机理与领域自适应混合驱动的机械故障智能迁移诊断方法,该方法首先依据故障机理和源域数据建立旋转机械故障虚拟样本生成模型,再采用目标域正常数据实现生成模型对目标域的自适应,最后通过虚拟样本训练得到目标域故障诊断模型。采用标准数据集和实验室轴承数据对提出方法进行验证,结果表明,提出方法对不同型号轴承诊断时取得88.61%的平均准确率,相比对比方法高41.22%。  相似文献   

10.
基于振动监测数据的航空发动机滚动轴承损伤大小识别,对于研究滚动轴承故障演化、故障预测和故障诊断具有重要意义。针对传统模型对先验知识依赖性高、特征提取不充分、故障尺寸训练类别有限等问题,提出了一种基于深度学习的滚动轴承损伤尺寸预计方法,能够对训练过程中未出现的中间尺寸进行准确识别。在经典模型的基础上,搭建了一种深度卷积网络与长短期记忆网络组合模型,该模型可对轴承振动信号的多维特征与时序特征进行充分提取,实现轴承故障的智能和高效诊断。最后,利用滚动轴承加速疲劳试验机,进行了多种转速与损伤尺寸下的滚动轴承故障试验,基于试验数据进行了方法的比较,结果表明,该组合网络的在正常和加噪的情况下预测精度分别达到99.94%和98.67%,较单独的深度卷积网络、长短期记忆网络及其他模型精度更高,比较结果充分表明了本文所提方法的优越性。  相似文献   

11.
针对航空发动机剩余寿命预估中模型建立困难且计算精度低等问题,提出了一种基于卷积神经网络和长短期记忆神经 网络进行航空发动机剩余寿命预估的方法。利用卷积神经网络中的卷积层与池化层提取传感器数据中的特征,并依据卷积层提 取出的特征,利用长短期记忆神经网络进行时间序列预测,并使用全连接层输出航空发动机剩余寿命。在NASA的C-MAPSS提 供的涡扇发动机退化仿真数据集上对该方法进行了验证。结果表明:基于卷积神经网络和长短期记忆神经网络的航空发动机剩 余寿命预估方法,可以在保证预测精度的前提下,对航空发动机剩余寿命进行较为保守的预估,在保证资源不被浪费的情况下,尽 可能提前发出故障预警信号,从而提高飞行的安全性,进而为航空发动机健康管理系统提供有用信息。该预测方法在对称指标和 非对称指标上均优于此前提出的方法。  相似文献   

12.
基于LSTM和CNN的高速柱塞泵故障诊断   总被引:1,自引:0,他引:1  
魏晓良  潮群  陶建峰  刘成良  王立尧 《航空学报》2021,42(3):423876-423876
针对高速轴向柱塞泵容易发生空化,且目前空化故障诊断方法存在依赖手工特征提取、鲁棒性不高的问题,提出了一种基于长短时记忆(LSTM)和一维卷积神经网络(1D-CNN)相结合的空化故障诊断方法。搭建了柱塞泵故障实验台,采集柱塞泵在不同空化等级下的壳体振动信号。利用LSTM和1D-CNN搭建的分类模型对不同进口压力情况下的振动信号进行空化等级识别。实验结果表明:提出的方法能够准确地识别出4类不同的空化等级,准确率高达99.5%,同时在不附加降噪方法的情况下,具有良好的鲁棒性,在0 dB信噪比的情况下,识别准确率高达87.3%。  相似文献   

13.
针对现有基于卷积神经网络的故障诊断方法存在模型参数量和计算量大的问题,提出一种改进的SqueezeNet模型应用于直升机滚动轴承故障诊断。该模型借鉴VGG16模型的思想,在经典的SqueezeNet基础上,采用3个3×3卷积核代替1个7×7卷积核,实现了在相同感知野条件下增加网络容量、增强非线性、减少网络参数量,采用卷积层、池化层和Fire模块、池化层两大结构交替的方式组成模型特征提取层,在保障特征提取能力的情况下,进一步减少了网络参数量。通过轴承数据开展模型故障诊断实验,结果表明该模型诊断精度达到99.65%,与传统卷积神经网络及经典的SqueezeNet模型相比诊断精度相当,而计算量与参数量最大缩减约6倍和36倍。  相似文献   

14.
将卷积神经网络引入风机故障检测领域,设计了一种一维卷积神经网络的结构,并和SoftMax分类器相结合构造了一种双层智能诊断架构。一维卷积神经网络用于行星齿轮箱数据的特征提取,SoftMax分类器对提取的特征进行分类。与传统智能算法相比,该方法具有训练样本少,可直接使用原始数据训练网络;计算效率高,可以适应实时诊断的需要。试验结果证明,该方法可以有效地诊断出不同工况下的行星齿轮箱中的齿轮故障。  相似文献   

15.
智能化的航空发动机损伤检测是飞机故障诊断重要的研究方向,针对现有目标检测模型对航空发动机的小目标损伤检测效果差的问题,提出了一种改进的基于You Only Look Once version 4(YOLOv4)的多尺度目标检测方法。在路径聚合网络(PANet)中构建低层次的特征融合层,将更浅层的特征与深层特征融合,提高网络对小目标损伤的检测性能。为减少网络中的冗余参数,在颈部结构中引入了深度可分离卷积,将标准卷积重构为深度可分离卷积的形式。实验表明:改进后的YOLOv4对小目标损伤的检测精度提升了3.43%,模型大小降低了54.06 MB,同时检测速度提高了31.03%。研究结果表明改进的YOLOv4模型对小目标损伤具有更好的检测性能。  相似文献   

16.
基于深度学习的航空发动机不平衡故障部位识别   总被引:2,自引:2,他引:0  
陈果  杨默晗  于平超 《航空动力学报》2020,35(12):2602-2615
针对基于机匣测点的航空发动机不平衡故障部位识别问题,提出了基于深度卷积神经网络的航空发动机不平衡故障部位诊断方法。针对某典型双转子航空发动机,建立整机耦合动力学模型,并利用数值积分算法实现不平衡故障数值仿真;在从发动机压气机端到涡轮端的高、低压转子上选择4个不平衡故障部位作为诊断对象,通过仿真分析得到发动机典型转速下的转子不同部位不平衡故障的仿真样本;计算4个机匣测点信号的规范化频谱,通过对大量仿真数据的处理得到反映不同不平衡故障部位的故障样本集;利用仿真得到的大量不平衡故障样本,训练深度卷积神经网络,利用深度卷积神经网络的优良特征学习能力实现航空发动机不平衡故障的不同部位进行识别,数值试验结果表明该方法对航空发动机不平衡故障部位的识别准确率达到95%。  相似文献   

17.
标签样本少条件下机电设备的准确故障诊断对于提高复杂机电设备的健康管理能力具有重要意义。针对标签样本少条件下难以建立准确故障诊断模型的问题,在半监督生成对抗网络的基础上,将注意力模块引入生成对抗网络,并利用格拉姆角场将一维数据转换为二维图像;结合双向生成对抗网络特点,提出一种基于双重注意力机制的半监督双向生成对抗网络(S-BIGAN)机电设备故障诊断模型,以轴承数据为例进行验证。结果表明:与CNN-SVM、SGAN 等算法相比,本文提出的模型能够提高样本生成质量和故障分类特征,有效解决标签样本少情况下的故障诊断问题,极大地提高了故障诊断准确率。  相似文献   

18.
卷积神经网络和峭度在轴承故障诊断中的应用   总被引:1,自引:1,他引:1  
李俊  刘永葆  余又红 《航空动力学报》2019,34(11):2423-2431
针对传统智能诊断方法依靠专家知识和人工提取数据特征工作量大的问题,结合深度学习方法在特征提取和处理大数据方面的优势,研究了一种基于卷积神经网络和振动信号峭度指标的滚动轴承故障诊断方法。该方法将深度学习应用于轴承故障诊断,提取滚动轴承正常状态、内圈故障、外圈故障和滚动体故障4种状态的振动信号,将振动信号分段处理得到峭度指标,使用数据到图像的转换方法将峭度指标转换为灰度图,送入卷积神经网络模型完成故障分类。在进行滚动轴承故障诊断的实验时,所提的模型诊断准确率达到99.5%,高于传统支持向量机(SVM)算法的95.8%。   相似文献   

19.
针对长短期记忆(LSTM)网络对于多维数据特征识别和提取上存在不足的问题,在其改进模型嵌套式长短期记忆(NLSTM)网络的基础上,提出了一种基于注意力机制和残差NLSTM网络的剩余使用寿命预测方法。该方法将双层NLSTM网络代替残差块中的主网络,保留捷径连接中的卷积神经网络结构,既能充分提取时序特征又能保证有用数据在网络层中的跳层传递,并融入注意力机制构建多层残差网络,注意力机制的使用能够选择出对预测结果有重要影响的信息,有效提高预测的准确率。在航空发动机退化实验数据集上进行实验分析,结果表明:所述方法能有效建立监测数据与发动机健康状态之间的关系,剩余使用寿命预测误差较未改进残差结构方法平均降低10.8%,比未融入注意力机制方法平均降低18.9%,有效提高了预测精度。  相似文献   

20.
深度学习模型能够辅助提高基于导波的复合材料结构损伤监测的可靠性,但需要大量的损伤样本。以大量的模拟损伤样本和少量的真实损伤样本为基础,设计一种基于域自适应的损伤识别模型,实现从模拟损伤识别向真实损伤识别能力的迁移。首先,通过粘贴质量块收集大量模拟损伤数据,设计卷积-时序混合神经网络,实现对模拟损伤的高准确率识别;然后,在模型中加入域自适应模块,使模拟损伤和真实损伤数据在特征空间内分布规律近似,进而在无需对真实损伤进行标注的情况下,实现准确识别。实验结果表明,该方法对真实损伤的检出准确率为85.7%,优于传统深度学习模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号