首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
本根据未来航空发动机的要求,综述了各种先进材料(第三代单晶合金、双性能高温粉末合金、热障涂层、钛合金及钛铝复合材料、金属基复合材料、陶瓷及其复合材料、高温结构c/c复合材料及聚合物基复合材料等)的性能、特点及应用情况,从而为新材料的选用提供参考,并作为今后进一步论证的起点。  相似文献   

2.
使用聚酰亚胺(PI)膜和PI纤维编织布制备深空探测用柔性织物复合材料,研究表面处理对PI膜和PI纤维编织布之间粘结性能的影响。采用自制表面处理剂分别对PI膜和PI纤维编织布的表面进行处理,再经硅橡胶胶黏剂粘结制备柔性复合材料。使用T剥离强度试验方法测试柔性织物复合材料的层间胶接性能,并分析复合材料剥离面的形貌状态。结果显示,PI膜和PI织物的表面处理可以显著提高柔性织物复合材料的T剥离强度。其中,PI膜和PI织物未经表面处理时,柔性织物复合材料的T剥离强度为8.9 N/cm。对PI膜进行表面处理,或者对PI膜和PI织物均进行表面处理的情况下,柔性织物复合材料的T剥离强度增加至11.7 N/cm和12.8 N/cm,分别提高了31.5%和43.8%。这表明对PI膜及PI织物进行合理的表面处理,可以显著提高柔性织物复合材料的胶接性能。  相似文献   

3.
通过地面环境模拟实验,分析了高模碳纤维/环氧树脂改性氰酸酯复合材料(M40J/CE/EP)的表面元素,研究了高真空加热环境下复合材料的真空出气性能和出气气体成分.结果表明,M40J/CE/EP复合材料的表面主要由C、O、N元素构成;经高真空加热后,复合材料的出气气体成分以小分子挥发物和碳氢化合物电离碎片为主,有可能在空间低温条件下冷凝在航天器的敏感器件表面而造成污染;通过真空出气性能实验测得,M40J/CE/EP复合材料的总质量损失(TML)的平均值为0.27%,收集到的可凝挥发物(CVCM)为0,完全达到出气筛选合格的指标要求.  相似文献   

4.
在多种湿热环境下对两种环氧树脂基复合材料层压板的开孔压缩、层间剪切及三曲强度性能进行了对比研究。试验结果表明,在室温(RT)条件下,复合材料吸湿量大小对其强度性能影响较小,但在高温湿综合环境下,复合材料层压板的强度性能明显下降。  相似文献   

5.
Cf/SiC陶瓷基复合材料发展状况   总被引:13,自引:1,他引:13  
Cf/SiC陶瓷基复合材料作为高温结构材料,在高性能发动机上具有潜在的应用前景。本文综述了制备Cf/SiC陶瓷基复合材料增强相--碳纤维的发展;Cf/SiC复合材料的基本制备工艺及性能(包括力学性能、复合材料氧化性能、界面性性质等);复合材料当前的应用等各方面的发展。最后指出了有待解决的问题和今后努力的方向。  相似文献   

6.
利用真空压力浸渗法制备了石墨纤维增强的铝基复合材料(Gr/ZL101A),研究了不同的纤维分布状态(SiC颗粒混杂纤维与未混杂的纤维)对复合材料显微组织及弯曲性能的影响。结果表明,SiC颗粒混杂不仅改善了纤维分布均匀性,而且弯曲性能也有明显提高。  相似文献   

7.
从复合材料结构设计许用值的概念和复合材料的冲击后压缩强度性能出发,讨论了按NASA标准得到的CAI值与它们的关系,指出了传统的CAI值不能充分反映复合材料体系的抗冲击性能。且与结构压缩设计许用值无任何联系。在对复合材料结构完整性要求和作者的试验研究,和对国外文献总结的基础上,提出复合材料抗冲击性能的评定应包括损伤阻抗和损伤容限两方面。大量的试验数据证实复合材料层压板抗冲击性能存在拐点现象,在对拐点附近复合材料层压板的破坏机理研究基础上,建议用拐点附近的性能建立复合材料层压板抗冲击性能的评定体系,即可以用表面层在冲击下保持其完整性的最大能力(最大接触力)来表征复合材料体系的损伤阻抗(韧性);用出现拐点后基本不变的压缩强度(破坏应变)门槛值来表征复合材料体系的损伤容限。  相似文献   

8.
以含0.46%-3.7%(质量分数)吡啶不溶物(PI)的宝钢煤焦油为原料,在450℃下自升压热缩聚制备中间相碳微球(MCMB),然后将其在700℃下进行碳化。应用SEM、恒电流充放电等技术研究了所得MCMB的表面物理形态及充放电性能。研究发现:随原料中一次PI含量的增加,MCMB的球径逐渐减小;首次电容量从326mA.h.g^-1增至425mA.h.g^-1,首次不可逆容量先增加而后减小,而首次充放电效率先减小而后增加。  相似文献   

9.
胡廷永 《航空学报》1989,10(10):564-564
纤维增强树脂/金属层间混杂复合材料是国外80年代开发的具有优良性能及广阔应用前景的新型结构材料。芳纶增强环氧/铝曾间混杂复合材料(ARALL)具有优异的耐疲劳开裂性、高拉伸强度,耐冲击、易加工成型,预计在90年代将取代大约10%航空用金属材料。碳纤维增强环氧/铝层间混杂复合材料(CALL)具有质轻、高强、尺寸热稳定性好、耐疲劳性能优良等特点。  相似文献   

10.
利用真空压力浸渗法制备了石墨纤维增强的铝基复合材料(Gr/ZL101A),研究了没的纤维分布状态对复合材料同组织及弯曲性能的影响。结果表明,SiC颗粒混杂不仅改善了纤维分布均匀性,而且弯曲性能明显提高。  相似文献   

11.
宁波海大精工机械有限公司是宁波海天集团股份有限公司麾下一家专业的数控机床制造企业,通过技术引进、吸收、创新,努力创建成为国内知名中高档数控机床制造企业.海天精工以每年至少推出5种机型的速度快速丰富和完善各系列产品,现已形成3大系列.  相似文献   

12.
GF阿奇夏米尔是世界领先的,提供用于工模具制造及精密零件加工的机床、自动化解决方案及服务的供应商。其产品线涵盖了放电加工机床、高速铣削加工中心、高性能铣削加工中心、夹具和托盘系统、服务、备件、耗材和自动化解决方案等。  相似文献   

13.
高效加工是满足日益提高的产品精度和生产效率要求的必要措施.选择合适的高效切削加工工艺和高完整性加工技术,可以在大幅降低生产成本的同时实现加工工件的高尺寸精度和高表面完整性.对高效切削加工工艺及高完整性技术进行综述,介绍和分析包括高速切削技术、复合加工技术、先进加工刀具、高效冷却技术和新型高完整性加工原理及其技术应用.研究表明,切削高速度、刀具高效率、机床高复合、冷却高环保以及新型高完整性加工技术是高效切削及切削后续工艺的重要发展方向.  相似文献   

14.
The Air Force has requirements for large amounts of electrical power at high voltage (up to hundreds of kilovolts) for certain airborne applications. Because of the severe weight and volume constraints, these systems cannot be realized using conventional technology. The Air Force, therefore, has been heavily involved in the development of lightweight power generation and conditioning equipment. Programs have been undertaken to reduce the weight of rotating machines, transformers, switches, inverters, and capacitors. The advances made in these areas are described, and some aspects of the use of these components in the design of lightweight systems are discussed.  相似文献   

15.
高速粘性内流的高分辨率高精度迎风型杂交格式   总被引:3,自引:0,他引:3  
本文在有限体积离散和LU分解的基础上,构造出一个新的隐式迎风型杂交格式,并用于求解定常流动的稳态解。  相似文献   

16.
铝合金高速切削技术   总被引:8,自引:0,他引:8  
阐述了铝合金高速加工(HSM)技术的应用现状,分析了阻碍数控设备主轴转速与进给速度充分利用的影响因素;介绍了铝合金高效率高速加工的若干重要技术问题。  相似文献   

17.
通过分析提高FTP速度和性能的方法,结合现有的网格技术中数据传输部分(GridFTP)的实现给出了一个经过改进的GridFTP,经过测试,数据传输的速度和性能都有了很大的提高。  相似文献   

18.
介绍一种既是高压分压箱 ,又是高值电阻器的装置。它与通用型的 QJ36电桥、检流计、高压电源一起组成了一台高阻箱、高压表检定装置 ,适合于省、局级计量机构及大型企业计量机构使用。  相似文献   

19.
通过试验、分析、比较,提出了高温、高稳定性压电元件的研制要求,并确认了铋钛系列晶体是制作压电加速度传感器较理想的材料.  相似文献   

20.
大进给铣削   总被引:1,自引:0,他引:1  
随着航空业对难加工材料(例如:钛合金)需求的增加,刀具制造企业也在改进设计和制造工艺,力求改进的刀具可以节省切削时间和提高加工效率。近几年在难加工材料的粗加工中,通过提高切削进给量,用底刃切削的大进给铣刀越来越受欢迎。大进给铣削的基本原理是通过改变刀  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号