首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The quasilinear theory of MHD waves excitation by cosmic rays accelerated at a front of supernova shock has been constructed. It is shown that the energetic particles excite the waves propagating from the shock front, the intensity and the spectrum of these waves is obtained. The role of nonlinear Landau damping in the formation of such spectrum has been analysed. The diffusive scattering length of the high energy particles in the preshock region has been calculated and it is shown with the help of these formulae that the effective Fermi acceleration at the shock front is possible upto the values of the relativistic factor = 104 - 105. The injection mechanism for cosmic rays acceleration has been proposed. It is based on stochastic Fermi acceleration of the thermal plasma by MHD waves excited in the preshock region. Different possibilities for wave phase velocity dispersion needed for stochastic Fermi acceleration are analysed, those are the excitation of the oblique magnetosonic waves as well as the excitation of parallel Alfven waves propagating in opposite directions. The distribution function of the suprathermal particles accelerated by MHD waves is obtained, the cosmic rays density as well as the lower boundary of their energy spectrum realised in the proposed mechanism are also calculated.  相似文献   

2.
An extensive model analysis of plastic track detector measurements of high-LET particles on the Space Shuttle has been performed. Three shuttle flights: STS-51F (low-altitude, high-inclination), STS-51J (high-altitude, low-inclination), and STS-61C (low-altitude, low-inclination) are considered. The model includes contributions from trapped protons and galactic cosmic radiation, as well as target secondary particles. Target secondaries, expected to be of importance in thickly shielded space environments, are found to be a significant component of the measured LET (linear energy transfer) spectra.  相似文献   

3.
The random nature of sources (the supernova remnants) leads to the fluctuations of cosmic ray intensity in space and time. We calculate the expected fluctuations in a flat-halo diffusion model for particles with energies from 0.1 to 103 TeV. The data on energy spectra and anisotropy of very high energy protons, nuclei and electrons, and the astronomical data on supernova remnants, the potential sources of cosmic rays, are used to constrain the value of the cosmic-ray diffusion coefficient and its dependence on energy.  相似文献   

4.
A computer simulation was carried out to evaluate the basic characteristics of a Δ E×E cosmic ray telescope consisting of 23 solid state detectors including 3 position sensitive detectors with large effective area. Based on the simulation, the geometric factor of the telescope is deduced to be as large as 22.5 cm2sr, almost independent of charge and energy concerned. The energy ranges to be covered by the telescope are, for example, 18–98 MeV/n for Li and 56–339 MeV/n for Fe. By analyzing simulated data, the mass resolution for iron in the overall energy range covered by the telescope is estimated as about 0.22 amu in standard deviation. The expected counting rates and mass-histograms are simulated for Galactic cosmic rays and solar energetic particles.  相似文献   

5.
分析了日本Nagoya 宇宙线闪烁体望远镜30°, 49°, 64° 倾角的东、西、南、北方向探测数据的变化特点, 运用小波分析方法定性地探讨了磁暴前后宇宙线南北、东西各向异性的变化特征. 研究发现, 当发 生大地磁暴时, 地面宇宙线强度的各向异性特征将发生非常大的变化, 这种变化一般在磁暴发生前10~20 h就开始出现. 当描述这种各向异性特征的各向异性指数的小波系数变化达到一定阈值时, 就可能有大地磁暴发生.   相似文献   

6.
Data from satellite impact experiments and the scanning of recovered spacecraft offers an extended timebase to examine, using a consistent methodology, the microparticle fluxes. New penetration data from the TiCCE experiment on Eureca /1, 2/ adds to this database and shows that - despite an expected growth in the micro-debris flux - the observed flux is not greater than either LDEF or SMM. The question arises: “is this consistent with the micro particle flux being dominated by space debris or by meteoroids”.

To assist this assessment, numerical modelling using the Gear method /3/ of explicit time integration of the atmospheric drag lifetime of micron dimensioned orbital debris in both circular (LEO) and eccentric (GTO) orbits has been performed for the relevant space exposures. Results are applied to the data to examine whether the recent variations in flux can be attributed to varying levels of, orbital micro-debris caused by atmospheric drag and its changes during the solar cycle.  相似文献   


7.
After entering our local astrosphere (called the heliosphere), galactic cosmic rays, as charged particles, are affected by the Sun’s turbulent magnetic field. This causes their intensities to decrease towards the inner heliosphere, a process referred to as modulation. Over the years, cosmic ray modulation has been studied extensively at Earth, utilizing both ground and space based observations. Moreover, modelling cosmic ray modulation and comparing results with observations, insight can be gained into the transport of these particles, as well as offering explanations for observed features. We review some of the most prominent cosmic ray observations made near Earth, how these observations can be modelled and what main insights are gained from this modelling approach. Furthermore, a discussion on drifts, as one of the main modulation processes, are given as well as how drift effects manifest in near Earth observations. We conclude by discussing the contemporary challenges, fuelled by observations, which are presently being investigated. A main challenge is explaining observations made during the past unusual solar minimum.  相似文献   

8.
Artemia cysts, lettuce and tobacco seeds were flown aboard the Cosmos 1129 for 19 days. A correlative method was used in order to determine the passage of cosmic heavy ions (HZE particles) through the biological test objects. This space flight resulted in a decrease on hatchability, nucleic acid and protein synthesis in hydrated Artemia cysts. HZE particle effects on plant cellular chromosomes are confirmed. In tobacco seeds, a stimulating effect on germination rate and a higher frequency of abnormalities were observed. Dormant biological objects are a very suitable material to study cosmic ray effects: these objects can be arranged in monolayers and sandwiched between visual track detectors in order to determine the passage of the cosmic heavy ions (HZE particles). On the other hand this method allows us to study effects of microgravity and those of the protonic component of cosmic rays in the objects not hit by the HZE articles.  相似文献   

9.
High energy chemical reactions and atom molecule interactions might be important for cosmic chemistry with respect to the accelerated species in solar wind, cosmic rays, colliding gas and dust clouds and secondary knock-on particles in solids. “Hot” atoms with energies ranging from a few eV to some MeV can be generated via nuclear reactions and consequent recoil processes. The chemical fate of the radioactive atoms can be followed by radiochemical methods (radio GC or HPLC). Hot atom chemistry may serve for laboratory simulation of the reactions of energetic species with gaseous or solid interstellar matter. Due to the effective measurement of 108–1010 atoms only it covers a low to medium dose regime and may add to the studies of ion implantation which due to the optical methods applied are necessarily in the high dose regime.

Experimental results are given for the systems: C/H2O (gas), C/H2O (solid, 77 K), N/CH4 (solid, 77K) and C/NH3 (solid, 77 K). Nuclear reactions used for the generation of 2 to 3 MeV atoms are: 14N(p, ) 11C, 16O(p, pn) 11C and 12C(d,n) 13N with 8 to 45 MeV protons or deuterons from a cyclotron. Typical reactions products are: CO, CO2, CH4, CH2O, CH3OH, HCOOH, NH3, CH3NH2, cyanamide, formamidine, guanidine etc. Products of hot reactions in solids are more complex than in corresponding gaseous systems, which underlines the importance of solid state reactions for the build-up of precursors for biomolecules in space. As one of the major mechanisms for product formation, the simultaneous or fast consecutive reactions of a hot carbon with two target molecules (reaction complex) is discussed.  相似文献   


10.
A dosimetry-radiometry system has been developed at the Space Research Institute of the Bulgarian Academy of Science to measure the fluxes and dose rates on the flight of the second Bulgarian cosmonaut. The dosimetry system is designed for monitoring the different space radiations, such as solar cosmic rays, galactic cosmic rays and trapped particles in the earth radiation belts. The system consists of a battery operated small size detector unit and a "read-write" and telemetry microcomputer unit. The sensitivity of the instrument (3.67 x 10(-8) rad/pulse) permits high resolution measurements of the flux and dose rate along the track of the Mir space station. We report our initial results for the period of the flight between the 7th and 17th June 1988.  相似文献   

11.
A method of prediction of expected part of global climate change caused by cosmic ray (CR) by forecasting of galactic cosmic ray intensity time variation in near future based on solar activity data prediction and determined parameters of convection-diffusion and drift mechanisms is presented. This gave possibility to make prediction of expected part of global climate change, caused by long-term cosmic ray intensity variation. In this paper, we use the model of cosmic ray modulation in the Heliosphere, which considers a relation between long-term cosmic ray variations with parameters of the solar magnetic field. The later now can be predicted with good accuracy. By using this prediction, the expected cosmic ray variations in the near Earth space also can be estimated with a good accuracy. It is shown that there are two possibilities: (1) to predict cosmic ray intensity for 1–6 months by using a delay of long-term cosmic ray variations relatively to effects of the solar activity and (2) to predict cosmic ray intensity for the next solar cycle. For the second case, the prediction of the global solar magnetic field characteristics is crucial. For both cases, reliable long-term cosmic ray and solar activity data as well as solar magnetic field are necessary. For solar magnetic field, we used results of two magnetographs (from Stanford and Kitt Peak Observatories). The obtained forecasting of long-term cosmic ray intensity variation we use for estimation of the part of global climate change caused by cosmic ray intensity changing (influenced on global cloudiness covering).  相似文献   

12.
Future space missions will involve long-term travel beyond the magnetic field of the Earth, where astronauts will be exposed to radiation hazards such as those that arise from galactic cosmic rays. Galactic cosmic rays are composed of protons, alpha particles, and particles of high energy and charge (HZE particles). Research by our group has shown that exposure to HZE particles, primarily 600 MeV/n and 1 GeV/n 56Fe, can produce significant alterations in brain neurochemistry and behavior. However, given that protons can make up a significant portion of the radiation spectrum, it is important to study their effects on neural functioning and on related performance. Therefore, these studies examined the effects of exposure to proton irradiation on neurochemical and behavioral endpoints, including dopaminergic functioning, amphetamine-induced conditioned taste aversion learning, and spatial learning and memory as measured by the Morris water maze. Male Sprague-Dawley rats received a dose of 0, 1.5, 3.0 or 4.0 Gy of 250 MeV protons at Loma Linda University and were tested in the different behavioral tests at various times following exposure. Results showed that there was no effect of proton irradiation at any dose on any of the endpoints measured. Therefore, there is a contrast between the insignificant effects of high dose proton exposure and the dramatic effectiveness of low dose (<0.1 Gy) exposures to 56Fe particles on both neurochemical and behavioral endpoints.  相似文献   

13.
本文求解了点源爆炸波在环形磁场中传播的非自型问题。以耀斑引起的击波传播为例讨论了解的应用。从中可以看到,磁场扰动呈U形,主要发生在0.5Re—1.0Re的击波区域;行星际磁场的存在使击波到达1AU的时间延长了几个小时;击波必须具有大于磁截止能量EM1S2/4π J0R时(符号意义见内容)才有可能传播到1AU以远的地方,日冕磁场结构对耀斑击波进入行星际空间的传播有重要作用。   相似文献   

14.
The two components of the space radiation environment, galactic cosmic rays and solar energetic particles, are of special importance for the planning of space missions and designing space vehicles for flights in the inner heliosphere. There is a constant need for developing and updating the models for calculating the fluxes of these particles for purposes of forecasting radiation conditions anticipated for future flights, including missions to the Moon and Mars.  相似文献   

15.
The spectra of neutrons >10 MeV and gamma-rays 1.5–100 MeV under the Earth Radiation Belts, restored from the data, obtained onboard orbital complex “SALUTE-7”-“KOSMOS-1686”, are presented. The spectra shapes are similar to those for albedo neutrons and gamma-rays, but absolute values of their fluxes (0.2 cm−2 s−1 for neutrons, 0.8 cm−2 s−1 for gamma-rays at the equator and 1.2 cm−2 s−1, 1.9 cm−2 s−1, accordingly, at L=1.9) are several times as large. It is possibly explained by the fact that most of the detected particles were produced by the cosmic ray interactions with the orbital complex matter. Neutron and gamma-ray fluxes obtained from “CORONAS-I” data are near those for albedo particles.  相似文献   

16.
The Aragats Solar Environment Center provides real time monitoring of different components of secondary cosmic ray fluxes. We plan to use this information to establish an early warning alert system against extreme, very large solar particle events with hard spectra, dangerous for satellite electronics and for the crew of the Space Station. Neutron monitors operating at altitude 2000 and 3200 m are continuously gathering data to detect possible abrupt variations of the particle count rates. Additional high precision detectors measuring muon and electron fluxes, along with directional information are under construction on Mt. Aragats. Registered ground level enhancements, in neutron and muon fluxes along with correlations between different species of secondary cosmic rays are analyzed to reveal possible correlations with expected times of arrival of dangerous solar energetic particles.  相似文献   

17.
The influence of cosmic radiation and/or microgravity on insect development was studied during the 7 day German Spacelab Mission D1. Eggs of Carausius morosus of five stages differing in sensitivity to radiation and in capacity to regeneration were allowed to continue their development in the BIORACK 22°C incubator, either at microgravity conditions or on the 1 g reference centrifuge. Using the Biostack concept - eggs in monolayers were sandwiched between visual track detectors - and the 1 g reference centrifuge, we were able to separate radiation effects from microgravity effects and also from combined effects of these two factors in space. After retrieval, hatching rates, growth kinetics and anomaly frequencies were determined in the different test samples. The early stages of development turned out to be highly sensitive to single hits of cosmic ray particles as well as to the temporary exposure to microgravity during their development. In some cases, the combined action of radiation and microgravity even amplified the effects exerted by the single parameters of space. Hits by single HZE particles caused early effects, such as body anomalies, as well as late effects, such as retarded growth after hatching. Microgravity exposure lead to a reduced hatching rate. A synergistic action of HZE particle hits and microgravity was established in the unexpectedly high frequency of anomal larvae. However, it cannot be excluded, that cosmic background radiation or low LET HZE particles are also causally involved in damage observed in the microgravity samples.  相似文献   

18.
On 15th February 1992, ISAS space engineering satellite HITEN was successfully inserted into an elliptical orbit around the moon with perilune between some 100 km and 8000 km and apolune of about 50.000 km. On board was a small scientific experiment designed to detect cosmic dust particles, MDC - Munich Dust Counter. During a period of more than one year, until Hiten's hard landing on the moon surface at 10th of April 1993 (UTC), measurements of impact velocity, mass and crude flight direction of micrometeoroid particles have been performed. In total 150 cosmic dust impacts were detected and evaluated. From these measurements, the impact rate versus time and the dust flux versus distance from the moon are derived. The evidence of moon ejecta and some indications of particles which are orbiting the moon will be discussed. The spatial distribution of the measured particles is shown in lunarcentric as well as in heliocentric coordinate systems. The directional distribution is also given, showing the different populations of cosmic dust particles. Finally, the gathered data will be compared with previous results from measurements in the vicinity of the Earth and in the geomagnetic tail region.  相似文献   

19.
20.
During the recent ground level enhancement of 13 December 2006, also known as GLE70, solar cosmic ray particles of energy bigger that ∼500 MeV/nucleon propagated inside the Earth’s magnetosphere and finally accessed low-altitude satellites and ground level neutron monitors. The magnitude and the characteristics of this event registered at different neutron monitor stations of the worldwide network can be interpreted adequately on the basis of an estimation of the solar particle trajectories in the near Earth interplanetary space. In this work, an extended representation of the Earth’s magnetic field was realized applying the Tsyganenko 1989 model. Using a numerical back-tracing technique the solar proton trajectories inside the magnetospheric field of the Earth were calculated for a variety of particles, initializing their travel at different locations, covering a wide range of energies. In this way, the asymptotic directions of viewing were calculated for a significant number of neutron monitor stations, providing crucial information on the Earth’s “magnetospheric optics” for primary solar cosmic rays, on the top of the atmosphere, during the big solar event of December 2006. The neutron monitor network has been treated, therefore, as a multidimensional tool that gives insights into the arrival directions of solar cosmic ray particles as well as their spatial and energy distributions during extreme solar events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号