共查询到18条相似文献,搜索用时 109 毫秒
1.
对带推力矢量飞机的飞控设计问题进行了研究。根据奇异摄动理论将受控状态变量分为快变量和慢变量,然后根据非线性动态逆理论分别对内环和外环进行设计。针对非线笥动态逆要求准确的数学模型的特点,引入模糊自适应控制以考虑模型的不确定性,最后对所设计的飞控规律进行过失速机动仿真。结果表明,在存在较大模型误差的情况下,所设计的飞控规律安全能在过失速机动条件下控制飞机跟踪指令飞行。 相似文献
2.
3.
4.
5.
6.
7.
针对飞机自动着陆飞行提出了基于神经网络的鲁棒自适应非线性动态逆控制器设计方案。首先采用非线性动态逆方法设计着陆飞行的基本控制律,再利用多层感知器神经网络设计适当的权值调整规则使其能够自适应地逼近和补偿逆误差。仿真结果表明,所设计的飞行控制系统是有效的,系统能够克服动态逆误差对着陆飞行控制带来的不利影响。 相似文献
8.
回顾了直升机机动飞行逆仿真技术国内外发展概况,借鉴国内外的研究成果,针对逆仿真核心技术的发展现状进行了分析和讨论,在此基础上,对直升机机动飞行逆仿真技术的进一步发展趋势进行了分析。 相似文献
9.
10.
11.
12.
一种基于神经网络补偿动态逆误差的方法 总被引:3,自引:0,他引:3
讨论了一种基于神经网络自适应补偿动态逆误差的方法,并应用于超机动飞机控制器设计中,飞机的基本控制采用非线性动态逆方法进行设计,对于模型不准确导致的逆误差采用神经网络进行在线补偿,仿真结果表明,采用神经网络补偿误差,弥补了非线性动态逆要求精确数学模型的缺点,而且可以简化动态逆控制律的设计,改善整个控制系统的性能。 相似文献
13.
提出了一种基于小波神经网络辨识的PID神经网络模型参考自适应控制方法。该方法采用小波神经网络作为辨识器,PID神经网络作为控制器在线调节。由于小波变换具有良好的时频局部特性,神经网络具有强大的非线性映射能力,自学习、自适应等优势,采用规范正交的小波函数作为神经网络的基函数构成小波神经网络,该网络兼有小波函数的紧支性、波动性以及神经网络的非线性映射能力,自学习、自适应能力等优点,仿真结果表明用该方法构成的控制系统收敛速度快,逼近精度高,鲁棒性好,优于一般的BP网络控制。 相似文献
14.
15.
根据反馈神经网络控制方法在发动机控制系统中的应用研究,建立了基于反馈网络的发动机控制系统。采用反馈神经网络辨识发动机模型参数,用动态自适应算法对神经网络权值进行了调整,并在飞行包线内各工作点对整个控制系统进行了仿真。结果表明,使用神经网络建立的发动机控制系统具有良好的控制品质和较强的自适应能力。 相似文献
16.
提出了一种基于模糊模型的歼击机鲁棒自适应重构控制方案。整个控制方案基于T S模糊模型,将歼击机各飞行状态的局部线性调节器与鲁棒自适应神经网络重构控制器相结合,避免了传统的增益预置方法中控制律在不同工作点之间切换造成的参数突变对系统性能的影响,可以保证系统在全局上拥有局部工作点具有的期望性能,证明了重构系统的全局闭环渐近稳定性。所提出的带有补偿项的完全自适应RBF神经网络,通过在线自适应调整RBF神经网络的权重、函数中心和宽度,提高了神经网络的学习能力,同时通过自适应补偿项来在线估计神经网络的近似误差边界,可以有效地在线修正建模误差、外扰及操纵面故障等因素的影响,保证系统的操纵品质。仿真结果表明了所提出方法的有效性。 相似文献
17.
18.
研究了一种自适应轨迹线性化控制策略并应用于空天飞行器(ASV)飞行控制系统设计。通过理论分析指明当前轨迹线性化控制方法(TLC)对系统中的不确定存在鲁棒性不足的问题。为了解决这一问题,首先研究了一种径向基神经网络干扰观测器(RDO)技术,严格证明了RDO对于系统中不确定因素具有良好的逼近能力。然后利用RDO输出得到一种新的基于RDO的自适应TLC控制策略。神经网络自适应律采用Lyapunov方法设计,保证了闭环系统所有信号有界。最后采用新方案实现了ASV飞控系统,仿真结果表明整个闭环系统在鲁棒性能方面得到很大提高。 相似文献