首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
China has great progress in the technology and application of ocean color remote sensing during 2004-2006. In this report, firstly, four major technical advances are displaying, including (1) the vector radiative transfer numerical model of coupled ocean-atmosphere system; (2) the atmospheric correction algorithm specialized on Chinese high turbid water; (3) systematical research of hyper-spectrum ocean color remote sensing; (4) local algorithms of oceanic parameters, like ocean color components, ocean primary productivity, water transparency, water quality parameters, etc. On the foundation of technical advances, ocean color remote sensing takes effect on ocean environment monitoring, with four major kinds of application systems, namely, (1) the automatic multi-satellites data receiving, processing and application system; (2) the shipboard satellite data receiving and processing system for fishery ground information; (3) Coastal water quality monitoring system, integrating satellite and airborne remote sensing technology and ship measurement; (4) the preliminary system of airborne ocean color remote sensing application system. Finally, the prospective development of Chinese ocean color remote sensing is brought forward. With Chinese second ocean color satellite (HY-1B) orbiting, great strides will take place in Chinese ocean color information accumulation and application.  相似文献   

2.
The eccentric binary model for X Persei is discussed with a view to most recent determination of mass, radius and mass loss rate. The existence of such a system depends critically on the value of viscosity in the outer layers of the star and, in the case where viscosity is induced by shear turbolence, on the axial rotational velocity. The parameters of the binary system are derived in the most favourable case.  相似文献   

3.
The Space Environment Monitor (SEM) onboard the NOAA POES satellites has been measuring the near-Earth charged particle environment since 1978, providing an extensive database that can be used for studying the long-term behavior of this population of trapped particles. POES stands for Polar Orbiting Environmental Satellite. These satellites orbit at ∼840 km altitude and at an inclination of 98°. The SEM-1 instrument was flown on the POES satellites beginning in 1978 with TIROS-N and NOAA-6 in 1979 and continuing to NOAA-14 launched in 1995 with the exception of NOAA-9 and NOAA-11 (NOAA-13 failed shortly after launch). Its replacement, SEM-2, has flown on the POES NOAA-15, -16, and -17 satellites (from 1998). Here we present the results of a study on the statistical variations of the high-energy trapped proton environment. Among the detectors in SEM, the four SEM-2 omni-directional proton detectors for energies >16 MeV, >36 MeV, >70 MeV, and >140 MeV provide the data most relevant to this study.  相似文献   

4.
In order to detect and study the ionospheric response to solar flares (transient high energy solar radiation), we have constructed a radio receiver station at Mexico City, which is part of the “Latin American Very low frequency Network” (LAVNet-Mex). This station extends to the northern hemisphere the so called “South American VLF Network”.  相似文献   

5.
On October 6, 2008, an Mw 6.3 earthquake occurred in Dangxiong county, southern Tibetan Plateau. In this study, Synthetic Aperture Radar (SAR) images from Envisat ASAR C-band descending Track 176 and ALOS PALSAR L-band ascending Track 500 are processed to generate the coseismic deformation caused by the earthquake. To estimate the source model, a downhill simplex non-linear inversion method is used to determine the fault rupture geometry, and an automatic fault discretization technique is employed to divide the fault plane to construct the optimal slip model, in which the uncertainties of the fault parameters are assessed by a Monte Carlo method. The inversion results show that the earthquake strikes almost south–north and has a normal faulting focal mechanism with rake angle and slip of −111.7° and 1.33 m, respectively. Peak slip of 2.15 m is located at a depth of 7.5 km. The estimated geodetic moment is 4.06 × 1018 N m (Mw 6.37), 71.2% of which is released in the depth range 4.5–11 km. The slip model suggests that coseismic slip also takes place at some fault patches near the earth’s surface and postseismic afterslip occurs below the coseismic rupture area after the earthquake.  相似文献   

6.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German Project to develop and operate a gyrostabilized 2.5-m telescope in a Boeing 747-SP. This observatory will allow astronomical observations from 0.3 μm to sub-millimeter wavelengths at stratospheric altitudes as high as 45,000 ft where the atmosphere is not only cloud-free, but largely transparent at infrared wavelengths. The dynamics and chemistry of interstellar matter, and the details of embedded star formation will be key science goals. In addition, SOFIA’s unique portability will enable large-telescope observations at sites required to observe transient phenomena and location specific events. SOFIA will offer the convenient accessibility of a ground-based telescope for servicing, maintenance, and regular technology upgrades, yet will also have many of the performance advantages of a space-based telescope. Initially, SOFIA will fly with nine first-generation focal plane instruments that include broad-band imagers, moderate resolution spectrographs that will resolve broad features from dust and large molecules, and high resolution spectrometers capable of studying the chemistry and detailed kinematics of molecular and atomic gas. First science flights will begin in 2010, leading to a full operations schedule of about 120 8–10 h flights per year by 2014. The next call for instrument development that can respond to scientifically exciting new technologies will be issued in 2010. We describe the SOFIA facility and outline the opportunities for observations by the general scientific community with cutting edge focal plane technology. We summarize the operational characteristics of the first-generation instruments and give specific examples of the types of fundamental scientific studies these instruments are expected to make.  相似文献   

7.
The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project grown out of the needs of the astronomical community to have future access to the UV range. WSO/UV consists of a single UV telescope with a primary mirror of 1.7 m diameter feeding the UV spectrometer and UV imagers. The spectrometer comprises three different spectrographs, two high-resolution echelle spectrographs (the High-Resolution Double-Echelle Spectrograph, HIRDES) and a low-dispersion long-slit instrument. Within HIRDES the 102–310 nm spectral band is split to feed two echelle spectrographs covering the UV range 174–310 nm and the vacuum-UV range 102–176 nm with high spectral resolution (R > 50,000). The technical concept is based on the heritage of two previous ORFEUS SPAS missions. The phase-B1 development activities are described in this paper considering performance aspects, design drivers, related trade-offs (mechanical concepts, material selection etc.) and a critical functional and environmental test verification approach. The current state of other WSO/UV scientific instruments (imagers) is also described.  相似文献   

8.
In this paper, we use canonical correlation analysis (CCA) method to investigate the semi-diurnal tidal winds in mesosphere and low thermosphere (MLT) region, observed by a newly installed meteor radar at Wuhan (30.6°N, 114.4°E), during the year 2002. In general, 4(3) effective semi-diurnal tidal pairs of patterns are obtained, which represent ∼2/3 total variances of the origin data set. These patterns are expected to be corresponding to the atmospheric oscillations within the semi-diurnal frequency band excited or modulated by different sources, i.e., the seasonal variations, the modulations by the planetary wave oscillations or the solar 27-day activity. Among all the patterns, the 1st pattern, which represents ∼1/3 of total variances, is the most notable. Its amplitudes show maximum values in spring and autumn, and the vertical wavelengths are longer in summer and shorter in winter, which is in line with the results obtained from traditional harmonic analysis. The vertical wavelengths of the higher order patterns (∼50 km) suggest the classic semi-tidal mode S(2, 4)/S(2, 5) is dominant.  相似文献   

9.
10.
The life on Mars remains an open question because of the lack of proof of its past emergence and its current presence. The only indices of a potential Martian life were provided by the Viking Landers, and the study of the Martian meteorite ALH84001 discovered in the Antarctic. In the two case, the results of experiments could be explained either by the presence of life forms or by abiotic processes. The recent data of Mars Express orbiter and Mars Exploration Rovers show different proofs of a past environment favourable for life. Among the targets we seek, the organic molecules are primordial because they are necessary to the origin of life. A key question is to know if they are present, in which concentration and under which form. Within the framework of a search for organic, we are developing an experimental setup simulating as close as possible the environmental conditions of Mars surface in order to determine how organic species evolve. We present here the first step of the development of this experiment which focuses on the study of the impact of the solar UV radiations reaching the Mars surface on glycine. First results show that glycine does not resist if directly exposed to UV radiations.  相似文献   

11.
This paper reports a study on the relationship between ionospheric total electron content (TEC) over East Asia and the tropospheric circulation around the Qinghai-Tibet Plateau. Ionospheric TEC over East Asia are obtained from 25 observatories during 1996–2004. By applying a partial correlation method which can eliminate the influences of solar and geomagnetic activities, we find no significant correlation between TEC and the Asian zonal circulation index (Iz), but find a positive correlation between the day-to-day variability of TEC and Iz. We suggest that the positive correlation is closely related with the topography of the Qinghai-Tibet Plateau. The dynamical effect on airflow of the plateau can generate vortexes, and the vortexes may continuously excite internal gravity waves (IGWs) which transmit up to the ionosphere and cause regional wave disturbances. This study gives evidence for the dynamical mechanism of ionosphere–troposphere coupling and shows the importance of the Qinghai-Tibet Plateau in the ionosphere–troposphere coupling over East Asia.  相似文献   

12.
In cooperation with Russia, the Brazilian deep space mission ASTER plans to send a small spacecraft to investigate the triple asteroid 2001-SN263. The nearest launch opportunities for this project include June 2022 and June 2025. One main exploration campaign is being planned with focus on the largest asteroid (Alpha). Among the instruments under development, a laser altimeter (named ALR) was preliminarily designed and presented in 2010–2011. Many studies to define mission and instruments requirements were performed aiming at the characterization of important issues for the successful realization of the mission. Among them, the identification of a suitable trajectory that could be followed by the ASTER spacecraft in the encounter phase, when the main campaign will take place. This paper describes the effort undertaken with focus on the laser altimeter operation. Possible encounter trajectories were modelled and simulated to identify suitable approach parameters and conditions allowing the accomplishment of the intended investigation. The simulation also involves the instrument operation, considering approach geometry, attitude, relative motion, time/date, and the dynamics of the main asteroid. From the laser altimeter point of view, keeping in mind the desired coverage results (50% minimum surface coverage of asteroid Alpha, complying with horizontal and vertical resolution requirements), results point out crucial features for the encounter trajectory, like the need for a small inclination (10-6 degrees; with respect to the asteroid's orbit), the most favourable spacecraft positioning (between the Sun and the asteroid) and pointing condition (back to the Sun), the minimum amount of achievable surface coverage (58%, focused on central areas), and the most proper time to conduct the main campaign (January 2025). Concerning the instrument, results offer refined values for divergence angle (500 to 650 μrad, half-cone), pulse repetition frequencies (from 1/20 to 1 Hz), and consequent data generation rates. A simulation tool that can use any 3D generated trajectories as input data was created for the analyses presented here. Although created for the ALR in this mission, this simple analysis tool can be adapted to other instruments in this or other missions.  相似文献   

13.
We report the results of ionospheric measurements from DPS-4 installed at Multan (Geog coord. 30.18°N, 71.48°E, dip 47.4°). The variations in F2-layer maximum electron density NmF2 and its peak height hmF2 are studied during the deep solar minimum between cycles 23 & 24 i.e 2008–2009 with comparisons conducted with the International Reference Ionosphere (IRI) versions 2012 & 2016. We find that the hmF2 observations peak around the pre-sunrise and sunrise hours depending on the month. Seasonally, the daytime variation of NmF2 is higher in the Equinox and Summer, while daytime hmF2 are slightly higher in the Equinox and Winter. High values of hmF2 around midnight are caused by an increase of upward drifts produced by meridional winds. The ionosphere over Multan, which lies at the verge of low and mid latitude, is affected by both E×B drifts and thermospheric winds as evident from mid-night peaks and near-sunrise dips in hmF2. The results of the comparison of the observed NmF2 and hmF2 for the year 2008–2009 with the IRI-2012 (both NmF2 and hmF2) and IRI-2016 (only hmF2) estimates indicate that for NmF2, IRI-2012 with Consultative Committee International Radio (CCIR) option produces values in better agreement with observed data. Whereas, for hmF2, IRI-2016 with both International Union of Radio Science (URSI) and CCIR SHU-2015 options, predicts well for nighttime hours throughout the year. However, the IRI-2012 with CCIR option produces better agreement with data during daytime hours. Furthermore, IRI-2012 with CCIR option gives better results during Equinox months, whereas, IRI-2016 with both URSI and CCIR SHU-2015 options predict well for Winter and Summer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号