首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-altitude communications reflector can be supported by radiation pressure beamed at it from below. Potential applications of such a communications device are reviewed. The supporting radiation can balance the weight of the mirror as well as inertial effects, including mirror drift toward the equator. Approximately polarized supporting radiation can rotate the mirror. The reflected signal may serve to monitor mirror orientation. Questions of stability are investigated when the mirror is made of fibers that can support only tension (not compression, shear, or bending.) If the supporting radiation beam is appropriately configured, the mirror can be stabilized with respect to vertical and horizontal displacements, libration, and distortion.  相似文献   

2.
A power line system consisting of multi-conductors above the ground is decomposed into a metal return (or balanced) and a ground return (unbalanced) circuit in terms of propagation modes. Power line radiation above the ground is sorted into two classes, transition radiation from discontinuities which takes place from a line of finite length and ?erenkov-like radiation from a ground return or unbalanced circuit due to the Earth's finite conductivity and dielectric properties. ?erenkov-like radiation is thought to be predominant and to be a main source origin of power line radiation and, therefore, is specifically discussed in this paper. The problem is reduced simply to wave propagation along an infinite wire above the ground, without taking into account line discontinuities and ionospheric effects. It is shown that a TEM-type wave of a ground return circuit at low frequencies virtually transfers to the principal TM wave of a surface waveguide at high frequencies, via a hybrid EH-type wave in an intermediate range of frequencies, i.e., ‘transition region’ with increasing frequency. Consequently, the attenuation characteristics of wave propagation, which should include radiation losses as well as ohmic losses in the wire and in the ground, possess a maximum and minimum at certain frequencies in the transition region. This is due to two reasons: one is that the Earth transfers to a dielectric from a conductor and the other is that the field concentrates more densely around the wire with increasing frequency. Experimental evidence of this phenomenon is also given.  相似文献   

3.
If the goal is to improve either aviation or shuttle safety and systems reliability, then modern methods of wire systems diagnostics, prognostics, mediation, repair, and validation are a must. This requires using modern non-destructive evaluation (NDE) procedures and equipment which yields information that supports the operator's wire health management program and feeds into his aging aircraft or shuttle containment processes. Commonly used wire inspection processes do not compliment aircraft electrical systems making it difficult to diagnose wiring problems or manage wiring systems health. The wire inspection tools in common use today can be represented by the volt/ohm meter, the meg/ohm meter, and visual techniques. The two meters only measure conductivity, connectivity, and insulation breakdown strength. Visual techniques, mirror and flashlight methods only reach about 25% of the aircraft wiring and subjectively identify only physical faults of the insulation and simple damaged components. Little can be determined relative to the wire, insulation, bundle, connector, connector pins, backshell, wire supports, grounding, shielding, or intended electrical systems performance. All items where data is necessary to analyze and manage the health of the system. Guidance material is currently not available for the electrical repairman for even a simplified zonal inspection. The user community also reports gross shortcomings in the guidance supplied by the manufacture's maintenance and repair manuals.  相似文献   

4.
针对涡轮转子叶片内冷技术,使用TR-PIV(time resolved particle image velocimetry)技术与热线技术同步原位测量了壁面加热条件下旋转通道内边界层速度场和温度场特性。结果显示:旋转数大于0.48时前缘面附近出现了回流现象,并从受力分析的角度给出了解释;回流区一般出现于流场下游、较大密度比、较高旋转数下,可以利用回流区的影响达到增强前缘面换热的目的;得到了旋转条件下无量纲温度型、温度脉动量和努塞尔数的变化规律,可以看出湍流边界层内部的温度场分布在旋转效应的影响下产生了强烈的不对称性,与静止条件下的标准规律相比会产生一定的偏差。  相似文献   

5.
针对航空发动机排气温度高精度测试的需求,采用流热耦合的数值模拟方法研究了某型屏蔽式热电偶在马赫数为0.2、0.3、0.4、0.5、0.6五种工况下的速度误差、导热误差、辐射误差的大小和变化趋势,以及偶丝长径比、屏蔽罩进出口面积比对屏蔽式热电偶稳态误差的影响规律。结果表明:在马赫数小于0.3工况下,辐射误差占总误差的比例最高;而在马赫数为0.6工况下,导热误差成为影响测温精度的最主要因素;合理地增加偶丝长径比能显著地降低导热误差,减小进出口面积比值会使速度误差增大辐射误差减少;因此,存在最佳的进出口面积比使得总稳态误差最小。最后选取了偶丝长径比为12,屏蔽罩进出口面积比为6对原屏蔽式热电偶进行了改型设计,使该屏蔽式热电偶的总稳态误差降低50%以上。   相似文献   

6.
旋转状态下方形通道内部流场特性热线实验   总被引:1,自引:4,他引:1  
魏宽  陶智  邓宏武  李海旺 《航空动力学报》2016,31(11):2635-2640
为了解决旋转条件下热线技术应用问题并且在此基础上精确测量旋转方形通道内部流场特性,搭建了用于旋转通道流场测试实验平台,采用了两种连线方式对热线进行了标定实验,获得了热线测量旋转通道内部平均速度的相对误差为±6%,对雷诺数和旋转数范围分别是5000~10000和0~0.222的旋转通道流场进行了测量,结果表明:旋转导致速度型整体向后缘面(Y/D=-0.5)偏转,X/D和旋转数越大,速度型偏转越明显;旋转数为0.222时,后缘面附近边界层速度型出现了一个拐点,可能与由哥氏力不稳定性引起的二次流有关.   相似文献   

7.
通过旋转条件下切割SiC单晶片,分析了切片表面微观形貌特点,研究了线锯速度、工件进给速度和工件转速对切片表面粗糙度与切向锯切力的影响规律。结果表明:增加工件旋转,切片表面平整光滑,沿线锯运动方向没有明显沟槽及凸起,质量明显得到改善;当转速由0增加到12 r/min时,切片表面粗糙度由1.532μm降到0.513μm;线锯速度和工件旋转速度增大、工件进给速度减小,切向锯切力减小,表面粗糙度减小。当线锯速度和工件旋转速度过大,切向锯切力和表面粗糙度反而会有所增加。  相似文献   

8.
章绍昆  毕庆贞  王宇晗 《航空学报》2021,42(10):524591-524591
在大型薄壁件镜像铣削加工中,由奇异点引起的旋转轴运动不连续会影响加工质量,降低加工效率。针对此问题,分析了镜像铣削加工奇异点存在的原因,提出了一种奇异区域内的刀具路径优化方法。首先,针对镜像铣削系统的铣削头和支撑头分别建立了其旋转轴运动学变换模型,推导旋转轴微分运动关系,据此分析奇异点存在的原因及其对加工质量和效率的影响,定义了机床行程内的奇异区域范围。分析结果表明在镜像铣削系统行程范围内,仅铣削头存在奇异区域,而支撑头不存在奇异区域。然后,在镜像铣削加工刀路约束条件下,基于刀路光顺性指标建立了刀路优化模型。通过在加工曲面参数域内对跨越铣削头奇异区域的刀路进行调整,使得优化后的刀路更加光顺,以提高加工精度和表面质量,减少奇异区域附近的加工时间。最后,通过镜像铣削加工实验验证所提方法的有效性。  相似文献   

9.
旋转光滑直通道湍流流动一维热线实验   总被引:1,自引:1,他引:0  
采用一维热线详细测量了不同雷诺数下及较高旋转数条件下旋转光滑直通道内湍流边界层及主流的速度型,在此基础上构建适用旋转数范围更广的旋转通道对数律的修正公式,分析了旋转效应对壁面摩擦速度的影响。实验过程中雷诺数范围是15000~25000,旋转数范围是0~0.444。通道壁面为室温,流体与壁面之间无热交换。结果表明:旋转对于通道截面速度型影响很大;旋转导致速度型整体向后缘面偏转,但最高速度出现在靠近前缘面的区域;后缘面无量纲平均速度型分布顺序与旋转数排列次序相一致,在对数律区符合对数律规律。壁面剪切应力在前缘面随着旋转数的增大而先单调递减,而在后缘面的变化趋势与此相反。旋转状态下修正的对数律公式斜率随着旋转数的增加而单调递减且在后缘面递减的趋势逐步有所减缓,并提出了对数律区的旋转修正公式,公式的误差范围控制在15%以内。   相似文献   

10.
Green  J.L.  Reinisch  B.W. 《Space Science Reviews》2003,109(1-4):183-210
The Radio Plasma Imager (RPI) on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) spacecraft was designed as a long-range magnetospheric radio sounder, relaxation sounder, and a passive plasma wave instrument. The RPI is a highly flexible instrument that can be programmed to perform these types of measurements at times when IMAGE is located in key regions of the magnetosphere. RPI is the first radio sounder ever flown to large radial distances into the magnetosphere. The long-range sounder echoes from RPI allow remote sensing of a variety of plasmas structures and boundaries in the magnetosphere. A profile inversion technique for RPI echo traces has been developed and provides a method for determining the density distribution of the plasma from either direct or field-aligned echoes. This technique has enabled the determination of the evolving density structure of the polar cap and the plasmasphere under a variety of geomagnetic conditions. New results from RPI show that the plasmasphere refills in slightly greater than a day at L values of 2.8 and that ion heating is probably playing a major role in the overall density distribution along the field-line. In addition, RPI's plasma resonance observations at large radial distances over the polar cap provided in situ measurements of the plasma density with an accuracy of a few percent. For the first time in the magnetosphere, RPI has also observed the plasma D resonances. RPI's long antennas and its very low noise receivers provide excellent observations in the passive receive-only mode when the instrument measures the thermal plasma noise as well as natural emissions such as the continuum radiation and auroral kilometric radiation (AKR). Recent passive measurements from RPI have been compared extensively with images from the Extreme Ultraviolet (EUV) imager on IMAGE resulting in a number of new discoveries. For instance, these combined observations show that kilometric continuum can be generated at the plasmapause from sources in or very near the magnetic equator, within a bite-out region of the plasmasphere. The process by which plasmaspheric bite-out structures are produced is not completely understood at this time. Finally, RPI has been used to successfully test the feasibility of magnetospheric tomography. During perigee passages of the Wind spacecraft, RPI radio transmissions at one and two frequencies have been observed by the Waves instrument. The received electric field vector was observed to rotate with time due to the changing density of plasma, and thus Faraday rotation was measured. Many future multi-spacecraft missions propose to use Faraday rotation to obtain global density pictures of the magnetosphere.  相似文献   

11.
An alternative to using a phased array to steer a radar beam is to electronically control the orientation of an inertialess broadband microwave reflector. Recent experiments have demonstrated that a planar plasma mirror immersed in a magnetic field can be formed with electron densities high enough to reflect X-band microwave beams. A plasma mirror performs like a metal mirror, but it is inertialess. Compared to high performance phased array systems, a plasma mirror based radar system is much simpler and is therefore more affordable. Electronic steering of microwave beams using a plasma mirror permits the use of wide instantaneous bandwidth waveforms. Potential areas of application for a plasma mirror based antenna system include ship self-defense, high-resolution radar imaging, target identification, electronic countermeasures, high data rate communications, spread spectrum links and remote sensing. As a reflector, the plasma mirror exhibits extremely low loss and the reflectivity is very nearly 100%. Since a perfectly reflecting object cannot radiate, the noise temperature contribution of the plasma mirror to the antenna temperature is likely to be small. The plasma sheet can be steered in elevation by tilting the magnetic field, and steering in azimuth may be accomplished by designating cathode initiation sites. Switching times between successive mirror orientations may be less than 20 μs  相似文献   

12.
四阶段抽样季度调查需要实施四层次样本轮换,在构造四层次样本轮换方法时主要应考虑三个问题,一是相邻两个季度四级单元的样本拼配率,二是相邻两年相同季度四级单元的样本拼配率,三是保证各级单元的样本拼配率在轮换过程中保持不变。如果一级单元、二级单元、三级单元和四级单元的样本轮换模式分别为32in、16in、8in和2-2-2(4),则这四个样本轮换模式就可组合成一种四层次样本轮换方法。该方法可以应用于中国劳动力调查的四层次样本轮换中。  相似文献   

13.
Radiation Tolerant SpaceWire Router for Satellite On-Board Networking   总被引:1,自引:0,他引:1  
The European Space Agency (ESA) recently proposed the space wire standard for reliable satellite on-board networking at high speeds. This paper presents the design of configurable space wire router and interface hardware macrocells, the first in state-of-the-art compliant with the latest standard extensions, protocol identification and remote memory access protocol. The space wire router with 8 links achieves 100 Mbits/s data rate with 135 W power consumption and 300 Krad radiation tolerance. These performances meet the requirements of planned ESA space missions  相似文献   

14.
The observations of type-III solar radio bursts are briefly reviewed to set requirements on a model for their interpretation. The most important of these requirements is that the source must be an electron stream which is in a state of continuous quasilinear relaxation and which initially must have a nearly monotonically decreasing velocity distribution. The problem of constructing a model is broken into three parts: (1) The plasma wave source which depends on the interaction of the electron stream with electron plasma waves. (2) The radiation source which depends on the interaction of plasma waves and transverse electromagnetic waves or in a magnetized plasma the ordinary and extraordinary modes of magnetoionic theory. (3) The propagation of radiation between the source and the observer which depends on the transmission of radiation through a scattering refracting absorbing magnetized plasma.Progress on a model for the plasma wave source is reviewed and it is concluded that no existing models are adequate. The equations which would lead to an adequate model are written down, but not solved. These include, in addition to collisional damping, Landau damping both by the exciting stream and the background plasma, and spontaneous and induced processes for a three-dimensional distribution of plasma waves. Possible limitations to a quasilinear approach such as pile-up of plasma waves and nonlinear effects are considered. Processes which affect the gross structure of the source such as electron trajectories in coronal streamers and electron scattering by inhomogeneities are reviewed.Progress on the radiation source is considered both in the absence and presence of a magnetic field. At high frequencies (e.g., 80 MHz) observations of radiation near the fundamental and second harmonic of the plasma frequency allow a unique determination of source size and the energy density in plasma waves within the uncertainties of geometry by source ray tracing. This determination is extremely critical because the fundamental must be amplified and thus production of the fundamental is effectively a much more highly nonlinear process than production of the second harmonic. At low frequencies (e.g., 500 kHz) the second harmonic is shown to be dominant because amplification of the fundamental becomes an inefficient process.Calculations of scattering of radiation in a random medium are reviewed. It is concluded that these are adequate at high and low frequencies, but have not been carried out properly at intermediate frequencies where amplification of the fundamental may still be present. It is shown in particular that when scattering is taken into account at high frequencies all observations can be explained by isotropic emission near the second harmonic. At low frequencies the nature of the scatterers is determined by source occultations unlike the case at high frequencies where these are free parameters. This fact allows the possibility of determining true source sizes at low frequencies by subtracting out the contribution due to scattering. A mechanism for producing the possibly observed linear or highly elliptical polarization of type-III bursts, which must be imposed far from the source due to Faraday rotation, is reviewed.Finally, the questions of what remains to be done and what we can hope to obtain upon completion of this work are briefly considered.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
吴惠松  林麒  彭苗娇  柳汀  冀洋锋  王晓光 《航空学报》2019,40(11):123144-123144
设计了一种用于飞行器双机编队飞行的风洞试验模型绳系并联支撑机构,模拟在周边有障碍物的有限空间通道中的飞行运动。以直升机为例,根据工况参数设计了双绳牵引并联机构作为飞行器模型的支撑,建立了基于可移动的滑轮铰点与直升机模型编队协同飞行的运动学模型,对系统的静刚度进行了分析,并通过试验验证了旋翼转动对该绳系支撑系统动刚度的影响,给出了在有限空间通道中模拟双机编队飞行与着陆过程中绳与绳之间、绳与模型之间的干涉算法,并对该支撑机构的绳系结构进行了干涉分析。结果表明,所设计的支撑机构能有效解决模拟飞行器模型双机编队在有限空间中飞行运动时的支撑干涉问题,而且系统刚度达到低速风洞试验的稳定性要求,是低速风洞中支撑飞行器模型进行编队飞行试验的有效解决方案。  相似文献   

16.
SiC单晶片表面质量对其后续半导体器件的制造有很大影响,但其材料的高硬度和高脆性,使切片过程变得非常困难。本文在往复式电镀金刚石线切割装置上采用单因素和正交法进行了SiC单晶切割实验,研究了工件转速、线锯速率、工件进给速率、线锯磨损对晶片表面粗糙度的影响规律以及三维形貌特点。结果表明:附加工件旋转运动,晶片表面质量提高,划痕减少、深度变浅;线速增大、工件旋转速率增大或工件进给速率减小,表面粗糙度值减小;线锯磨损晶片表面粗糙度值增大。相对线速和线锯磨损,工件转速和工件进给速率对晶片表面质量及粗糙度的影响更大。应在综合考虑效率和线锯损耗的基础上合理确定切割参数,尤其是工件进给速率。  相似文献   

17.
Compared with a copper wire electrode, molybdenum wire with a poor conductor is usually used as the electrode in high speed wire-cut electrical discharge machining(HSWEDM), so the resistance of an ultra-fine wire cannot be ignored. To study the differences of discharge characteristics between the ultra-fine wire and the conventional diameter wire, the continuous discharge waveform of two kinds of wire electrodes was compared. It was found that there was a multichannel discharge phenomenon in the...  相似文献   

18.
旋转状态下曲率对气膜冷却影响的分析   总被引:3,自引:2,他引:1  
 作为广泛应用于航空发动机涡轮叶片上的气膜冷却技术,其效果会受到叶片表面曲率、旋转、密度比等因素的影响。在通过理论分析着重研究了旋转状态下曲面上的气膜出流后,给出了评价曲面气膜出流受旋转速度影响的无量纲量局部旋转数。并且对各种影响因素进行了分析。在凸表面上,小局部旋转数会导致气膜趋于脱离壁面;大局部旋转数会使气膜趋于吸附壁面;对于凹表面,局部旋转数的影响正好相反。当局部旋转数很小时,动量流量比成为影响气膜出流脱离壁面与否的重要因素。文中并且给出了数值验证。  相似文献   

19.
Conclusion The difference of the geomagnetic field from the field of the idealized dipole not only creates certain difficulties for studying the geomagnetically trapped radiation but also presents new possibilities for studying the processes which control the particle movement in the magnetosphere. It will be remembered that the fact that the geomagnetic field is not a dipole played a decisive role in the very beginning of the formation of our ideas about the nature of the intense fluxes of the penetrating radiation detected during the satellite flights.In fact, the longitude dependence of the lower boundary of the penetrating radiation in the region of low latitudes according to the properties of the geomagnetic field made it possible to conclude immediately that the detected radiation was caused by the geomagnetically trapped particles.As to the difficulties in the trapped radiation study caused by the existence of the anomalies, they, first of all, result in the original and, at the first glance, incomprehensible form of the particle intensity contours drawn in geographical coordinates for low altitudes. However, when turning to the McIlwain coordinate system, which is naturally connected with the real magnetic field, the seeming chaos in the radiation distribution disappears being unexpectedly replaced by harmony and order. But even in this coordinate system some ambiguities are observed connected with the distortion of the adiabatic invariants during the time comparable with the period of the particle drift around the earth.The thorough analysis of these effects in combination with the observations of the radiation at high altitudes may answer such a principle question as the question about the velocity of the movements of the mirror points.It should be noted that some information has been obtained to date on the movement of the electron-mirror points only and similar information about protons is absent.It is possible that new aspects of the use of the magnetic anomalies for studying the geomagnetosphere will appear in due time.  相似文献   

20.
惯导系统受限于目前惯性器件长期稳定性水平,对服役期内武器装备的使用和维护提出了定期标定的保障需求。当前主要有两种标定方式:不拆卸情况下的武器装备整体标定与拆卸情况下的惯导系统单机标定。上述两种方式能够准确分离和标定的误差参数较少,且对设备、场地、人力、时间等保障条件提出了较高的要求。基于双轴旋转惯导系统开展自标定技术研究,设计了一种能够实现绝大部分误差分离和标定的转位方案,提出了一种大幅缩短标定时间的数据处理方案,实现了武器装备不拆卸、不转动条件下误差参数的快速、高精度、自动化标定,大大降低了武器装备的使用维护成本、减轻了部队的保障负担,试验结果验证了该自标定方法的正确性和有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号