首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Magnetic turbulence is found in most space plasmas, including the Earth’s magnetosphere, and the interaction region between the magnetosphere and the solar wind. Recent spacecraft observations of magnetic turbulence in the ion foreshock, in the magnetosheath, in the polar cusp regions, in the magnetotail, and in the high latitude ionosphere are reviewed. It is found that: 1. A large share of magnetic turbulence in the geospace environment is generated locally, as due for instance to the reflected ion beams in the ion foreshock, to temperature anisotropy in the magnetosheath and the polar cusp regions, to velocity shear in the magnetosheath and magnetotail, and to magnetic reconnection at the magnetopause and in the magnetotail. 2. Spectral indices close to the Kolmogorov value can be recovered for low frequency turbulence when long enough intervals at relatively constant flow speed are analyzed in the magnetotail, or when fluctuations in the magnetosheath are considered far downstream from the bow shock. 3. For high frequency turbulence, a spectral index α?2.3 or larger is observed in most geospace regions, in agreement with what is observed in the solar wind. 4. More studies are needed to gain an understanding of turbulence dissipation in the geospace environment, also keeping in mind that the strong temperature anisotropies which are observed show that wave particle interactions can be a source of wave emission rather than of turbulence dissipation. 5. Several spacecraft observations show the existence of vortices in the magnetosheath, on the magnetopause, in the magnetotail, and in the ionosphere, so that they may have a primary role in the turbulent injection and evolution. The influence of such a turbulence on the plasma transport, dynamics, and energization will be described, also using the results of numerical simulations.  相似文献   

2.
The large-scale electrical coupling between the ionosphere and magnetosphere is reviewed, particularly with respect to behavior on time scales of hours or more. The following circuit elements are included: (1) the magnetopause boundary layer, which serves as the generator for the magnetospheric-convection circuit; (2) magnetic field lines, usually good conductors but sometimes subject to anomalous resistivity; (3) the ionosphere, which can conduct current across magnetic field lines; (4) the magnetospheric particle distributions, including tail current and partial-ring currents. Magnetic merging and a viscous interaction are considered as possible generating mechanisms, but merging seems the most likely alternative. Several mechanisms have been proposed for causing large potential drops along magnetic field lines in the upper ionosphere, and many isolated measurements of parallel electric fields have been reported, but the global pattern and significance of these electric fields are unknown. Ionospheric conductivities are now thoroughly measured, but are highly variable. Simple self-consistent theoretical models of the magnetospheric-convection system imply that the magnetospheric particles should shield the inner magnetosphere and low-latitude ionosphere from most of the time-average convection electric field.  相似文献   

3.
We review generation mechanisms of Birkeland currents (field-aligned currents) in the magnetosphere and the ionosphere. Comparing Birkeland currents predicted theoretically with those studied observationally by spacecraft experiments, we present a model for driving mechanism, which is unified by the solar wind-magnetosphere interaction that allows the coexistence of steady viscous interaction and unsteady magnetic reconnection. The model predicts the following: (1) the Region 1 Birkeland currents (which are located at poleward part of the auroral Birkeland-current belt, and constitute quasi-permanently and stably a primary part of the overall system of Birkeland currents) would be fed by vorticity-induced space charges at the core of two-cell magnetospheric convection arisen as a result of viscous interaction between the solar wind and the magnetospheric plasma, (2) the Region 2 Birkeland currents (which are located at equatorward part of the auroral Birkeland-current belt, and exhibit more variable and localized behavior) would orginate from regions of plasma pressure inhomogeneities in the magnetosphere caused by the coupling between two-cell magnetospheric convection and the hot ring current, where the gradient-B current and/or the curvature current (presumably the hot plasma sheet-ring current) are forced to divert to the ionosphere, (3) the Cusp Birkeland currents (which are located poleward of and adjacent to the Region 1 currents and are strongly controlled by the interplanetary magnetic field (IMF)) might be a diversion of the inertia current which is newly and locally produced in the velocity-decelerated region of earthward solar wind where the magnetosphere is eroded by dayside magnetic reconnection, (4) the nightside Birkeland currents which are connected to a part of the westward auroral electrojet in the Harang discontinuity sector might be a diversion of the dusk-to-dawn tail current resulting from localized magnetic reconnection in the magnetotail plasma sheet where plasma density and pressure are reduced.  相似文献   

4.
Alexeev  Igor I. 《Space Science Reviews》2003,107(1-2):141-148
Three ways of the energy transfer in the Earth's magnetosphere are studied. The solar wind MHD generator is an unique energy source for all magnetospheric processes. Field-aligned currents directly transport the energy and momentum of the solar wind plasma to the Earth's ionosphere. The magnetospheric lobe and plasma sheet convection generated by the solar wind is another magnetospheric energy source. Plasma sheet particles and cold ionospheric polar wind ions are accelerated by convection electric field. After energetic particle precipitation into the upper atmosphere the solar wind energy is transferred into the ionosphere and atmosphere. This way of the energy transfer can include the tail lobe magnetic field energy storage connected with the increase of the tail current during the southward IMF. After that the magnetospheric substorm occurs. The model calculations of the magnetospheric energy give possibility to determine the ground state of the magnetosphere, and to calculate relative contributions of the tail current, ring current and field-aligned currents to the magnetospheric energy. The magnetospheric substorms and storms manifest that the permanent solar wind energy transfer ways are not enough for the covering of the solar wind energy input into the magnetosphere. Nonlinear explosive processes are necessary for the energy transmission into the ionosphere and atmosphere. For understanding a relation between substorm and storm it is necessary to take into account that they are the concurrent energy transferring ways. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Echim  M.M.  Lemaire  J.F. 《Space Science Reviews》2000,92(3-4):565-601
Plasma interaction at the interface between the magnetosheath and magnetosphere has been extensively studied during recent years. As a consequence various theoretical models have emerged. The impulsive penetration mechanism initially proposed by Lemaire and Roth as an alternative approach to the steady state reconnection, is a non-stationary model describing the processes which take place when a 3-D solar wind plasma irregularity interacts with the outer regions of the Earth's magnetosphere. In this paper we are reviewing the main features of the impulsive penetration mechanism and the role of the electric field in driving impulsive events. An alternative point of view and the controversy it has raised are discussed. We also review the numerical codes developed to simulate the impulsive transport of plasma across the magnetopause. They have illustrated the relationship between the magnetic field distribution and the convection of solar-wind plasma inside the magnetosphere and brought into perspective non-stationary phenomena (like instabilities and waves) which were not explicitly integrated in the early models of impulsive penetration. Numerical simulations devoted to these processes cover a broad range of approximations, from ideal MHD to hybrid and kinetic codes. The results show the limitation of these theories in describing the full range of phenomena observed at the magnetopause and magnetospheric boundary layers.  相似文献   

6.
This paper reviews recent developments in the understanding of the solar-wind magnetosphere interaction process in which the interplanetary magnetic field has been found to play a key role. Extensive correlative studies between the interplanetary magnetic field and the magnetospheric parameters have in the past few years yielded detailed information on the nature of the interaction process and have made possible to follow the sequence of events that are produced inside the magnetosphere in consequence of the solar-wind energy transfer. We summarize the observed effects of the interplanetary magnetic field, its north-south and east-west components in particular, found in various domains of the magnetosphere — dayside magnetopause, polar cap, magnetotail, auroral zone —, and present an overall picture of the solar-wind magnetosphere interaction process. Dungey's reconnected magnetosphere model is used as a frame of reference and the basic compatibility of the observations with this model is emphasized. In order to avoid overlap with other review articles in the series discussion on the energy conversion process inside the magnetosphere leading to the substorm phenomenon is kept to the minimal.  相似文献   

7.
Fuselier  S.A.  Mende  S.B.  Moore  T.E.  Frey  H.U.  Petrinec  S.M.  Claflin  E.S.  Collier  M.R. 《Space Science Reviews》2003,109(1-4):285-312
One of the IMAGE mission science goals is to understand the dayside auroral oval and its dynamic relationship to the magnetosphere. Two ways the auroral oval is dynamically coupled to the magnetosphere are through the injection of magnetosheath plasma into the magnetospheric cusps and through the ejection of ionospheric plasma into the magnetosphere. The ionospheric footpoints of the Earth's magnetospheric cusps are relatively narrow regions in invariant latitude that map magnetically to the magnetopause. Monitoring the cusp reveals two important aspects of magnetic reconnection at the magnetopause. Continuous cusp observations reveal the relative contributions of quasi-steady versus impulsive reconnection to the overall transfer of mass, energy, and momentum across the magnetopause. The location of the cusp is used to determine where magnetic reconnection is occurring on the magnetopause. Of particular interest is the distinction between anti-parallel reconnection, where the magnetosheath and magnetospheric field lines are strictly anti-parallel, and component merging, where the magnetosheath and magnetospheric field lines have one component that is anti-parallel. IMAGE observations suggest that quasi-steady, anti-parallel reconnection is occurring in regions at the dayside magnetopause. However, it is difficult to rule out additional component reconnection using these observations. The ionospheric footpoint of the cusp is also a region of relatively intense ionospheric outflow. Since outflow also occurs in other regions of the auroral oval, one of the long-standing problems has been to determine the relative contributions of the cusp/cleft and the rest of the auroral oval to the overall ionospheric ion content in the Earth's magnetosphere. While the nature of ionospheric outflow has made it difficult to resolve this long-standing problem, the new neutral atom images from IMAGE have provided important evidence that ionospheric outflow is strongly controlled by solar wind input, is `prompt' in response to changes in the solar wind, and may have very narrow and distinct pitch angle structures and charge exchange altitudes.  相似文献   

8.
First Results of the THEMIS Search Coil Magnetometers   总被引:1,自引:0,他引:1  
We present the first data from the THEMIS Search Coil Magnetometers (SCM), taken between March and June 2007 while the THEMIS constellation apogee moved from the duskside toward the dawnside. Data reduction, especially the SCM calibration method and spurious noise reduction process, is described. The signatures of magnetic fluctuations in key magnetospheric regions such as the bow shock, the magnetopause and the magnetotail during a substorm, are described. We also discuss the role that magnetic fluctuations could play in plasma transport, acceleration and heating.  相似文献   

9.
Fujimoto  M.  Terasawa  T.  Mukai  T. 《Space Science Reviews》1997,80(1-2):325-339
GEOTAIL observations of the low-latitude boundary layer (LLBL) in the tail-flanks show that they are the region where the cold-dense plasma appears with stagnant flow signatures accompanied by bi-directional thermal electrons (< 300 eV). It is concluded from these facts that the tail-LLBL is the site of capturing the cold-dense plasma of the magnetosheath origin on to the closed field lines of the magnetosphere. There are also cases that strongly suggest that the cold-dense plasma entry from the flanks can be significant to fill a substantial part of the magnetotail. In such cases, the cold-dense plasma is not spatially restricted to a layer attached to the magnetopause (that is, the LLBL), but continues to well inside the magnetotail, constituting the cold-dense plasma sheet. Inspired by the fact that these remarkable cases are found for northward interplanetary magnetic field (IMF), a statistical study on the status of the near-Earth plasma sheet is made. The results show that the plasma sheet becomes significantly colder and denser when the northward IMF continues than during southward IMF periods, and that the cold-dense status appears most prominently near the dawn and dusk flanks. These are consistent with the idea that, during northward IMF periods, the supply of cold-dense ions to the near-Earth tail from the flanks dominates over the hot-tenuous ions transported from the distant tail.  相似文献   

10.
The idea of expedient energy transformation by magnetic reconnection (MR) has generated much enthusiasm in the space plasma community. The early concept of MR, which was envisioned for the solar flare phenomenon in a simple two-dimensional (2D) steady-state situation, is in dire need for extension to encompass three-dimensional (3D) non-steady-state phenomena prevalent in space plasmas in nature like in the magnetosphere. A workshop was organized to address this and related critical issues on MR. The essential outcome of this workshop is summarized in this review. After a brief evaluation on the pros and cons of existing definitions of MR, we propose essentially a working definition that can be used to identify MR in transient and spatially localized phenomena. The word “essentially” reflects a slight diversity in the opinion on how transient and localized 3D MR process might be defined. MR is defined here as a process with the following characteristics: (1) there is a plasma bulk flow across a boundary separating regions with topologically different magnetic field lines if projected on the plane of MR, thereby converting magnetic energy into kinetic particle energy, (2) there can be an out-of-the-plane magnetic field component (the so-called guide field) present such that the reconnected magnetic flux tubes are twisted to form flux ropes, and (3) the region exhibiting non-ideal MHD conditions should be localized to a scale comparable to the ion inertial length in the direction of the plasma inflow velocity. This definition captures the most important 3D aspects and preserves many essential characteristics of the 2D case. It may be considered as the first step in the generalization of the traditional 2D concept. As a demonstration on the utility of this definition, we apply it to identify MR associated with plasma phenomena in the dayside magnetopause and nightside magnetotail of the Earth’s magnetosphere. How MR may be distinguished from other competing mechanisms for these magnetospheric phenomena are then discussed.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

11.
Energetic particle instrumentation on the Polar satellite has discovered that significant fluxes of energetic particles are continuously present in the region of the dayside magnetosphere where they cannot be stably trapped. This region is associated with either open magnetic field lines or a magnetic topology associated with pseudo-trapping. Two distinct features [Time-Energy Dispersion (TED) signatures and Cusp Energetic Particle (CEP) events] are observed in these energetic particle fluxes that strongly suggest a local acceleration of mostly shocked solar wind particles. As the solar wind particles ram themselves into the cusp geometry, they form diamagnetic cavities with strong turbulence that are capable of accelerating particles to energies of 100s and 1000s of kiloelectronvolts. This process forms a layer of energetic particles on the magnetopause as well as permits such particles to enter via drift the equatorial nightside magnetosphere to distances as close as six Earth radii under the influence of gradient and curvature effects in the local magnetic field. The fluxes of these particles have all of the properties associated with the ring current and can supply the magnitude of the cross tail current required. ISEE-1 energetic particle data and their pitch angle distributions [PAD] are examined at the magnetic equatorial plane on the night side to investigate and possibly validate the insights gains from the Polar data and energetic particle trajectory tracing in a realistic magnetic field. The existence and properties of butterfly-type PADs strongly supports the concept of a dayside high latitude source of energetic particle fluxes. Because the CEP process is impulsive and time variable the charge separation produced by the drifting electrons (eastward) and ions (westward) on the magnetospheric nightside may be responsible for the cross tail electric field that has been ascribed to the reconnection/convection process.  相似文献   

12.
Many widely used methods for describing and understanding the magnetosphere are based on balance conditions for quasi-static equilibrium (this is particularly true of the classical theory of magnetosphere/ionosphere coupling, which in addition presupposes the equilibrium to be stable); they may therefore be of limited applicability for dealing with time-variable phenomena as well as for determining cause-effect relations. The large-scale variability of the magnetosphere can be produced both by changing external (solar-wind) conditions and by non-equilibrium internal dynamics. Its developments are governed by the basic equations of physics, especially Maxwell’s equations combined with the unique constraints of large-scale plasma; the requirement of charge quasi-neutrality constrains the electric field to be determined by plasma dynamics (generalized Ohm’s law) and the electric current to match the existing curl of the magnetic field. The structure and dynamics of the ionosphere/magnetosphere/solar-wind system can then be described in terms of three interrelated processes: (1) stress equilibrium and disequilibrium, (2) magnetic flux transport, (3) energy conversion and dissipation. This provides a framework for a unified formulation of settled as well as of controversial issues concerning, e.g., magnetospheric substorms and magnetic storms.  相似文献   

13.
More than half a century after the discovery of Pi2 pulsations, Pi2 research is still vigorous and evolving. Especially in the last decade, new results have provided supporting evidence for some Pi2 models, challenged earlier interpretations, and led to entirely new models. We have gone beyond the inner magnetosphere and have explored the outer magnetosphere, where Pi2 pulsations have been observed in unexpected places. The new Pi2 models cover virtually all magnetotail regions and their coupling, from the reconnection site via the lobes and plasma sheet to the ionosphere. In addition to understanding the Pi2 phenomenon in itself, it has also been important to study Pi2 pulsations in their role as transient manifestations of the coupling between the magnetosphere and the ionosphere. The transient Pi2 is an integral part of the substorm phenomenon, especially during substorm onset. Key questions about the workings of magnetospheric substorms are still awaiting answers, and research on Pi2 pulsations can help with those answers. Furthermore, the role of Pi2 pulsations in association with other dynamic magnetospheric modes has been explored in the last decade. Thus, the application of Pi2 research has expanded over the years, assuring that Pi2 research will remain active in this decade and beyond. Here we review recent advances, which have given us a new understanding of Pi2 pulsations generated at various places in the magnetosphere during different magnetospheric modes. We review seven Pi2 models found in the literature and show how they are supported by observations from spacecraft and ground observatories as well as numerical simulations. The models have different degrees of maturity; while some enjoy wide acceptance, others are still speculative.  相似文献   

14.
Intermediate or mesoscale processes mediate the transfer of mass, momentum, and energy across the dynamic solar wind-magnetosphere interface, and the propagation of this input through the system to the ionosphere and atmosphere. The Dartmouth-Berkeley-Minnesota theory team has identified a number of mesoscale phenomena to be investigated as part of the GGS program, including: (1) effects of upstream density fluctuations on magnetopause dynamics, (2) three-dimensional reconnection, (3) magnetopause depletion layer studies, (4) ring current interaction with Pc 1 and Pc 5 waves, (5) generation of ion Larmor-scale current layers in the near Earth plasmasheet, (6) test particle studies in the magnetotail, (7) simulation of magnetosphere- ionosphere coupling including effects of kinetic Alfvén waves and (8) auroral acceleration region studies of the effects of kinetic Alfvén waves on particle distribution functions. A broad range of techniques will be implemented including ideal and reduced MHD, two fluid, hybrid, particle-in-cell and test particle simulations. Detailed comparison of simulation results with GGS satellite and ground based data will be undertaken.  相似文献   

15.
Convection is the most fundamental process in understanding the structure of geospace and disturbances observed in the magnetosphere–ionosphere (M–I) system. In this paper, a self-consistent configuration of the global convection system is considered under the real topology as a compound system. Investigations are made based on the M–I coupling scheme by analyzing numerical results obtained from magnetohydrodynamic (MHD) simulations which guarantee the self-consistency in the whole system under the Bv (magnetic field and velocity) paradigm. It is emphasized in the M–I coupling scheme that convection and field-aligned current (FAC) are different aspects of same physical process characterizing the open magnetosphere. Special attention is given in this paper to the energy supplying (dynamo) process that drives the FAC system. In the convection system, the dynamo must be constructed from shear motion together with plasma population regimes to steadily drive the convection. Convection patterns observed in the ionosphere are also the manifestation of achievement in global self-consistency. A primary approach to apply these concepts to the study of geospace is to consider how the M–I system adjusts the relative motion between the compressible magnetosphere and the incompressible ionosphere when responding to given solar-wind conditions. The above principle is also applicable for the study of disturbance phenomena such as the substorm as well as for the study of apparently unique processes such as the flux transfer event (FTE), the sudden commencement (SC), and the theta aurora. Finally, an attempt is made to understand the substorm as the extension of enhanced convection under the southward interplanetary magnetic field (IMF) condition.  相似文献   

16.
A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Recent measurements of precipitating energetic particles and vector magnetic fields from satellites and sounding rockets have verified the existence of geomagnetically-aligned electric currents at high latitudes in the ionosphere and magnetosphere. The spatial and temporal configuration of such currents, now commonly called Birkeland currents, has delineated their role in providing ionospheric closure of magnetospheric current systems, and gross features of these current systems may be understood in terms of theoretical models of magnetospheric convection. The association of Birkeland currents with auroral features on a very small scale suggests that auroral acceleration may result from the current flow.  相似文献   

18.
Saturn??s rich magnetospheric environment is unique in the solar system, with a large number of active magnetospheric processes and phenomena. Observations of this environment from the Cassini spacecraft has enabled the study of a magnetospheric system which strongly interacts with other components of the saturnian system: the planet, its rings, numerous satellites (icy moons and Titan) and various dust, neutral and plasma populations. Understanding these regions, their dynamics and equilibria, and how they interact with the rest of the system via the exchange of mass, momentum and energy is important in understanding the system as a whole. Such an understanding represents a challenge to theorists, modellers and observers. Studies of Saturn??s magnetosphere based on Cassini data have revealed a system which is highly variable which has made understanding the physics of Saturn??s magnetosphere all the more difficult. Cassini??s combination of a comprehensive suite of magnetospheric fields and particles instruments with excellent orbital coverage of the saturnian system offers a unique opportunity for an in-depth study of the saturnian plasma and fields environment. In this paper knowledge of Saturn??s equatorial magnetosphere will be presented and synthesised into a global picture. Data from the Cassini magnetometer, low-energy plasma spectrometers, energetic particle detectors, radio and plasma wave instrumentation, cosmic dust detectors, and the results of theory and modelling are combined to provide a multi-instrumental identification and characterisation of equatorial magnetospheric regions at Saturn. This work emphasises the physical processes at work in each region and at their boundaries. The result of this study is a map of Saturn??s near equatorial magnetosphere, which represents a synthesis of our current understanding at the end of the Cassini Prime Mission of the global configuration of the equatorial magnetosphere.  相似文献   

19.
Energetic (0.1-16 keV/e) ion data from a plasma composition experiment on the ISEE-1 spacecraft show that Earth's plasma sheet (inside of 23 RE) always has a large population of H+ and He++ ions, the two principal ionic components of the solar wind. This population is the largest, in terms of both number density and spatial thickness, during extended periods of northward interplanetary magnetic field (IMF) and is then also the most "solar wind-like" in the sense that the He++/H+ density ratio is at its peak (about 3% on average in 1978 and 79) and the H+ and He++ have mean (thermal) energies that are in the ratio of about 1:4 and barely exceed the typical bulk flow energy in the solar wind. During geomagnetically active times, associated with southward turnings of the IMF, the H+ and He++ are heated in the central plasma sheet, and reduced in density. Even when the IMF is southward, these ions can be found with lower solar wind-like energies closer to the tail lobes, at least during plasma sheet thinning in the early phase of substorms, when they are often seen to flow tailward, approximately along the magnetic field, at a slow to moderate speed (of order 100 km s-1 or less). These tailward flows, combined with the large density and generally solar wind-like energies of plasma sheet H+ and He++ ions during times of northward IMF, are interpreted to mean that the solar wind enters along the tail flanks, in a region between the lobes and the central plasma sheet, propelled inward by ExB drift associated with the electric fringe field of the low latitude magnetopause boundary layer (LLBL). In order to complete this scenario, it is argued that the rapid (of order 1000 km s-1) earthward ion flows (mostly H+ ions), also along the magnetic field, that are more typically the precursors of plasma sheet "recovery" during substorm expansion, are not proof of solar wind entry in the distant tail, but may instead be a time-of-flight effect associated with plasma sheet redistribution in a dipolarizing magnetic field.  相似文献   

20.
MESSENGER: Exploring Mercury’s Magnetosphere   总被引:1,自引:0,他引:1  
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury offers our first opportunity to explore this planet’s miniature magnetosphere since the brief flybys of Mariner 10. Mercury’s magnetosphere is unique in many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands off the solar wind only ∼1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic particles and, hence, no radiation belts. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere, allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury’s interior may act to modify the solar wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects may be an important source of information on the state of Mercury’s interior. In addition, Mercury’s magnetosphere is the only one with its defining magnetic flux tubes rooted beneath the solid surface as opposed to an atmosphere with a conductive ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived, ∼1–2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury’s magnetic tail. Because of Mercury’s proximity to the sun, 0.3–0.5 AU, this magnetosphere experiences the most extreme driving forces in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and recycling of neutrals and ions among the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury’s magnetosphere are expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection, and pick-up of planetary ions all playing roles in the generation of field-aligned electric currents. However, these field-aligned currents do not close in an ionosphere, but in some other manner. In addition to the insights into magnetospheric physics offered by study of the solar wind–Mercury system, quantitative specification of the “external” magnetic field generated by magnetospheric currents is necessary for accurate determination of the strength and multi-polar decomposition of Mercury’s intrinsic magnetic field. MESSENGER’s highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin of Mercury’s magnetic field and the acceleration of charged particles in small magnetospheres. In this article, we review what is known about Mercury’s magnetosphere and describe the MESSENGER science team’s strategy for obtaining answers to the outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号