首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 897 毫秒
1.
A study was carried out on the effects of processing and composition on the structure and properties of P/M EP741NP type alloys. The objectives of this study were to understand the role of Hf in a P/M superalloy containing high niobium used in aircraft engines and to determine the effects of extrusion and forging the powders as contrasted to HIPing (hot isostatic pressing) only. Two alloys of the P/M EP741NP composition were atomized: one alloy contained 0.26%Hf and the other was Hf free. After the as-atomized powders from both alloys were characterized, the powders were extruded into billets, forged and heat treated. After each process, the microstructures were characterized by SEM and the phases were extracted and identified by X-ray diffraction. The presence of Hf in the residues was probed by EDS (energy dispersive spectroscopy). The alloys were given the published Russian heat treatment as well as a more conventional heat treatment more typical of western powder alloys. Tensile, creep and stress rupture mechanical property tests were run. Results of the structural behavior of the alloys after each processing step will be presented and discussed. The role of the Hf on the mechanical proper- ties will be discussed.  相似文献   

2.
Residual stresses in ion-implanted NiTi alloy are measured by a combined method of Moiré interferometry and hole-drilling. Oxy-gen ions are implanted into the NiTi alloy under a voltage of 30 kV by a dose of 1.0×1017 ions/cm2 for one hour. Subsequently, in order to avoid dimensional error, a hole is drilled exactly in the center of the sample. The distribution of residual stresses around the hole is measured. It is indicated that the method which combines the Moiré interferometry with hole-drilling is able to be used to measure resid-ual stresses produced by ion implantation.  相似文献   

3.
Ni-Cr-W-Al-Ti-MoS2 self-lubricating composites were prepared through the powder metallurgy (P/M) method. Their friction properties were investigated by a pin-on-disk tribometer in the range from the room temperature to 600 ℃. Alumina, silicon nitride and nickel-iron-sulfide alloys were selected as the counterface materials. Results indicate that the lowest friction coefficients under 0.22 can be obtained at 600℃ when rubbed against alumina. When rubbed against nickel-iron-sulfide alloys, are presented the lowest wear rates in the magnitude of 10^-6 mm^3/N-m, one order of magnitude lower than those when rubbed against ceramics. In the case of three rubbing pairs, the wear rates of the composite containing MoS2 present themselves inversely proportional to friction coefficients. With alumina ceramics used as a counterface, transfer films and glaze layers will form on the contact surface playing a main role in lubrication at high temperatures. However, when silicon nitride and nickel-iron-sulfide alloy are used, the lubricating transfer films appear not to be prominent.  相似文献   

4.
Powder metallurgic Ti2 AlNb alloys with W addition are sintered at 900, 1000, 1070 °C,and 1150 °C(i.e., in the O + B2, a_2+ B2 + O, a_2+ B2, and single B2 phase regions, respectively)for 12 h, followed by water quenching and furnace cooling. Comparisons of phase and microstructure between quenched and furnace-cooled W-modified alloys are carried out to illustrate the phase transformation and microstructure evolution during the cooling process. Furthermore, a comparison is also made between W-modified and W-free alloys, to reveal the function of the W alloying.W addition accelerates the solutions of a_2 and O phases during the high-temperature holding, and a Widmannsta¨tten B2 + O structure, which contributes to the properties, is induced by furnace cooling from all the phase regions. The Widmannsta¨tten structure includes a B2 matrix, primary O, and secondary O precipitates. However, W alloying refines the Widmannsta¨tten structure only when the alloys are solution-treated and then cooled from the single B2 phase. Although the hardness of the W-modified alloys is lower than that of the W-free alloys sintered in the same phase region, an enhancement of hardness, 489 ± 18 HV, is obtained in the alloy solution-treated in the single B2 phase region for only 0.5 h.  相似文献   

5.
For a long time, chromate incorporated conversion coatings have been drawn special attention in corrosion protection of aircraft-used aluminum alloys. However, ever-increasing environmental pressures requires that non-chromate conversion coatings be developed because of the detrimental carcinogenic effects of the chromate compounds. In recent years, the sol-gel coatings doped with inhibitors were developed to replace chromate conversion coatings, and showed real promise; A sol-gel coating was prepared and its anti-corrosion behavior was investigated using the potentiodynamic scanning (PDS) and the electrochemical impedance spectroscopy (EIS). It is found that the sol-gel coating obtained by the hydrolysis and condensation of 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetramethoxysilane (TMOS) is prone to form defects if cured at the room temperature, whereas if cured at a higher temperature (100℃), these flaws can be avoided. Furthermore, it can be seen that addition of anti-foam agents and surfactants will reduce the faults if cured at the room temperature. Effects of the corrosion inhibitors, CeCl3 and mercaptobenzothiazole (MBT), in the sol-gel coatings on 2024-T3 aluminum alloy were also investigated. Results show that the corrosion resistance of the sol-gel coatings containing CeCl3 proves to be better than that of the pure and MBT added sol-gel coatings by the electrochemical methods.  相似文献   

6.
A new high strength 2A97 Al-Cu-Li-X alloy was subjected to triple-aging of retrogression and re-aging treatments (RRA). Transmission electron microscopy (TEM), differential scanning calorimetry (DSC), and tensile tests were used to investigate the effects of RRA treatment on the microstructures and properties. DSC test reveals the reversion temperature range of the strengthening δ' (Al3Li)phase. The results show that the microstructure consists of δ' (Al3Li) phase, T1 (Al2CuLi) phase and θ"/θ'(Al2Cu) phase for 2A97 alloy treated by a triple-aging ora retrogression and re-aging treatment in the following order: (1) at 165 ℃×30 min, (2) at 220 ℃ or 240 ℃×15 min, (3) at 165 ℃×24 h. The plastic deformation, incorporated into the treatment after secondary high temperature aging, promotes the T1 precipitation during final re-aging. The tensile properties of the alloy treated by the retrogression and re-aging treatment reach the peak level of alloy single-aged at 165 ℃ in T6 temper.  相似文献   

7.
Titanium alloy plays a crucial role in the electrochemical field due to its excellent corrosion resistance. The passivation and dissolution behaviors of Ti-6.5Al-2Zr-1Mo-1V(TA15) alloy in Na Cl solution were studied by simulating the electrochemical machining process in a rotating condition, which made the anode in a state with alternating high and low current density. Electron probe micro analysis, ultra-depth microscope, scanning electron microscope, and X-ray photoelectron spectrometer were u...  相似文献   

8.
《中国航空学报》2016,(1):30-40
How to control the microstructure of titanium alloy bars is important to fabricating high-performance aerial forgings. This paper gives a thorough survey of the manufacturing meth-ods and microstructure control techniques for titanium alloy bars. It summarizes the effects of pro-cessing parameters on the mechanisms and laws of microstructure evolution during b working and (a+b) working, including the kinetics and grains size of dynamic recrystallization (DRX) during b deformation and the kinetics and grains size of spheroidization during (a+b) deformation. The trends in microstructure control techniques are presented for fabricating titanium alloy bars with high efficiency, low cost, and high quality by means of b/(a+b) working, and the puzzles and chal-lenges in the future are also pointed out.  相似文献   

9.
Titanium alloys have a wide application in aerospace industries as it has greater strength and low density, but it has poor tribological properties. To improve its friction and wear performance, in present work, a femtosecond laser is used to directly irradiate the Ti6Al4V titanium alloy surface in air conditioning, which results in localized ablation and the formation of periodic microstructures but also a strong pressure wave, propagating the material inside. Through the optimization of proces...  相似文献   

10.
The bimodal grain size metals show improved strength and ductility compared to traditional metals; however, their corrosion properties are unknown. In order to evaluate the corrosion properties of these metals, the bimodal grain size 7075 aviation aluminum alloys containing different ratios of coarse(100 μm in diameter) and fine(10 μm in diameter) grains were prepared by spark plasma sintering(SPS). The effects of grain size as well as the mixture degree of coarse and fine grains on general corrosion were estimated by immersion tests, electrochemical measurements and complementary techniques such as scanning electron microscope(SEM) and transmission electron microscope-energy disperse spectroscopy(TEM-EDS). The results show that, compared to fine grains, the coarse grains have a faster dissolution rate in acidic NaCl solution due to the bigger size,higher alloying elements content and larger area fraction of second phases in them. In coarse grains,the hydrogen ions have a faster reduction rate on cathodic second phases, therefore promoting the corrosion propagation. The mixture of coarse and fine grains also increases the electrochemical heterogeneity of alloys in micro-scale, and thus the increased mixture degree of these grains in metal matrix accelerates the corrosion rate of alloys in acidic NaCl solution.  相似文献   

11.
Microstructure control always plays a key role in enhancing properties of high-strength AI alloys. Attempts to improve the micro-structure of 7000 series alloys by addition of 1.0 wt% Li have been made for a long time, but unsystematically. This article compares the microstructural features of 1.0 wt% Li-containing AI-Zn-Mg-Cu alloy with those of Li-free Al-Zn-Mg-Cu alloy by using differential scanning calorimetric (DSC) techniques, Vickers microhardness and transmission electron microscopy (TEM). The results show the dominance of Guinier Preston (GP) zones, η' or η phases in 1.0 wt% Li-coutaining Al-Zn-Mg-Cu alloy, and confirm the capability of Li to retard the rate of precipitates growth and coarsening.  相似文献   

12.
Li对Al-Zn-Mg-Cu系合金时效早期原子聚集行为的影响   总被引:4,自引:0,他引:4  
针对Al Zn Mg Cu Li合金时效早期出现的硬度快速上升现象,用L J势函数计算了该合金各种原子间、原子与空位间的相互作用势。结果表明:在Al Zn Mg Cu合金中,以Mg/v聚集为主,还有Zn/v,Cu/v,Zn/Mg的复合聚集;加入较高量的Li以后,则以Li/v聚集为主,几乎没有Zn/Mg聚集形式。  相似文献   

13.
用SAXS研究锂对7000系铝合金相变动力学的影响   总被引:2,自引:0,他引:2  
魏芳  李金山  周铁涛  刘培英 《航空学报》2008,29(4):1037-1043
 为了深入了解锂对7000系铝合金的影响,以获得优良性能含锂超高强铝合金,对含锂7000系铝合金进行了研究。采用小角X射线散射(SAXS)实验方法对7000系及含锂的7000系铝合金进行相变动力学研究,得出了析出相颗粒尺寸和体积分数。根据获得的这些数据进一步确定成核、长大和相变3个阶段的激活能。结果表明:含锂合金的析出相长大和粗化进程比无锂合金更加缓慢;含锂合金的成核激活能小于无锂合金,长大激活能和相变激活能都大于无锂合金,说明含锂合金析出相成核容易,长大和整个相变过程都比无锂合金困难。  相似文献   

14.
少量Cu对喷射沉积Al-Li合金显微组织与性能的影响   总被引:1,自引:0,他引:1  
用喷射沉积方法制备了Al-Li合金及其含0.5%Cu的改型合金,进行了挤压和时效处理,测定了不同状态下这两种合金的显微组织和室温拉伸性能。结果表明,喷射沉积状态的Al-3.8Li-1.0Mg-0.4Ge-0.2Zr合金具有等轴细晶组织,析出Al4Li9和δ AlLi相,时效后析出大量δ' AlLi相;添加0.5%Cu使屈服强度提高30~48MPa,拉伸强度提高44MPa,性能提高的原因是Cu的固溶强化和Li在基体固溶度减少导致δ'相含量增加。  相似文献   

15.
This article makes an investigation into the creep behavior and deformation features of FGH95 powder Ni-base superalloy by means of creep curves and microstructural observation. Results show that this superalloy exposes obvious sensibility to the applied temperature and stresses in the experimental range. Microstructure of the alloy consists of γ′ phase of various sizes and dispersed carbide particles precipitated in the wider crystal boundaries between the powder particles. During the creep, the deformation of the alloy occurs in the form of single- or double-oriented slipping inside the grains, and some of the finer carbide particles are precipitated near the slipping traces. The wide grain boundaries might be broken into the finer grains due to severe deformation. The deformation mechanism of the alloy during creep is thought to be the activation of dislocations of double-oriented slipping, including (1/2)<110> dislocation inside the γ matrix phase and <110> super-dislocation inside the γ′ phase. The formation of the stacking faults and (1/3)<112> super-Shockleys partial dislocation configuration is attributed to the decomposition of <110> super-dislocation in the γ′ phase.  相似文献   

16.
采用粉末热挤压法制备了一种Al-Zn-Mg-Cu超高强铝合金,研究了粉末粒度和挤压比对合金组织和力学性能的影响。结果表明,400℃挤压时,粉末中位径D50=28.38μm和挤压比λ=25可使挤压合金获得最好的力学性能,挤压合金经过460℃/2.5h水淬+120℃/24h空冷(T6)处理后的抗拉强度、屈服强度和伸长率分别为731MPa,670MPa和6.2%;晶粒细化是挤压合金力学性能随粉末粒度减小而提高的原因;挤压比λ为9~25时,挤压合金力学性能随挤压比增大而提高;λ=36时,挤压合金力学性能降低的原因是MgZn2析出相粗大和发生完全动态再结晶。  相似文献   

17.
利用Hopkinson压杆对Mg-3Li和Mg-3Li-1Sc合金进行了高应变率冲击实验,分析了添加少量Sc对Mg-3Li合金冲击变形行为及其应变率效应的影响.结果表明,在1350s~3000s-1应变率范围内,两种合金的动态应力-应变行为均表现出显著的应变率强化效应.但随应变率继续升高,合金的动态变形行为转为应变率弱...  相似文献   

18.
应用光电子能谱(Electron Spectroscopy for Chemical Analysis)系统研究了快速凝固纯铝粉末及高强Al-7.52n-2.0Mg-2.0Cu,高温Al-4Mn-4Ni-0.6Mg-0.6Zr和超轻Al-3.2Li-1.1Mg-0.3Cu-0.2Zr合金粉末表面结构及氧化层厚度和组成,探讨了合金元素,粉末尺寸及储存条件对粉末表面结构及氧化状况的影响。  相似文献   

19.
用单辊制备了成分为Al-(2-4)%Ce(质量分数)的合金快速凝固薄带。应用X射线衍射、透射电镜等研究了合金的相结构和显微组织,用显微硬度计测量了合金的显微硬度。结果表明,在相同冷却速度条件下,凝固组织主要受合金成分影响,而时效硬化行为主要受第二相长大温度的影响。  相似文献   

20.
研究了加入1. 7% Li对Al-Mg-Si合金的时效析出行为及拉伸性能的影响,用Li-v 模型阐述了Li使Al-Mg-Si合金时效下行为发生转变的机制:Li与空位优先结合,抑制了位错环的形成及Si, Mg 原子的扩散和聚集,从而推迟和限制了G.P.区的形成,因此, Al-Li-Mg-Si合金中δ'相是主要强化相,Mg2Si相只有经长时间的人工时效才能在基体中均匀析出。探讨了形变时效对Al-Li-Mg-Si合金组织和性能的影响,结果表明,时效前的预变形显著提高了Al-Li-Mg-Si合金的时效硬化速率和峰值强度,同样变形60% 的Al-Li-Mg-Si合金与不含Li的合金相比,具有相近的强度和延伸率,但前者具有较低的密度和较高的弹性模量,因此,Al-Li-Mg-Si合金表现出良好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号