共查询到10条相似文献,搜索用时 31 毫秒
1.
基于贯序正则极端学习机的时间序列预测及其应用 总被引:4,自引:0,他引:4
为实现对液压泵特征参数的在线预测,提出一种贯序正则极端学习机(SRELM),并研究了基于SRELM的预测方法.SRELM根据结构风险最小化原理实现网络训练,其网络权值可随新样本的逐次加入而递推求解,具有泛化能力强与训练速度快的优点,因此适于特征参数的在线预测.基于SRELM的预测方法利用特征参数训练SRELM模型,以逐... 相似文献
2.
提出一种动态集成极端学习机模型用于航空发动机健康状态预测.采用AdaBoost.RT集成学习算法对极端学习机(ELM)进行集成,在训练时采用每个训练样本的近邻样本对ELM的局域性能进行评估;在预测时首先确定新样本在训练样本集中的近邻样本,然后根据ELM在近邻样本上的性能来赋予集成权值实现弱学习机的动态集成.以燃油流量为指标进行航空发动机健康状态预测,动态集成ELM模型短期预测结果的平均相对误差绝对值(MAPE)为3.688%,小于单一ELM模型的3.830%以及静态集成ELM模型的3.719%;长期预测结果中动态集成ELM模型的MAPE为3.075%,小于单一ELM模型的4.355%以及静态集成ELM模型的3.884%.因此动态集成ELM模型更适用于航空发动机健康状态预测. 相似文献
3.
研究了一类特殊非线性系统——混沌系统的预测问题。混沌是一种普遍存在的非线性动力学行为,混沌时间序列难以预测和控制,文章先是通过重构系统状态相空间分析混沌时间序列,然后采用多层前向神经网络对其进行预测。对典型的Lorenz和Mackey-Glass混沌序列预测结果表明,如果训练样本足够多,网络结构简单适当,训练后的网络具有很好的泛化性能,说明神经网络预测方法具有较好的工程实用价值。最后分析神经网络初始权值设置对预测性能的影响,指出改进方向。 相似文献
4.
将优度评价方法运用于混沌时间序列预测算法评价中,确定评价算法的指标体系。建立混沌时间序列预测算法关于各评价指标的关联函数来刻画各评价对象的优秀程度并计算关联度。计算出各评价对象的优度值,将其用于对各算法的综合优度的比较。实例证明,该方法直观、实用,可为混沌时间序列预测算法评价提供定量的依据。 相似文献
6.
针对涡轴发动机控制系统设计,提出了1种基于在线滚动序列核极限学习机的非线性模型预测控制方法。综合考虑直升机旋翼扭矩、燃气涡轮转速、动力涡轮转速、涡轮级间温度和压气机喘振裕度等信息,设计具有较好实时性、精度和泛化能力的多输出在线滚动序列核极限学习机作为预测模型,引入预测模型输出与发动机输出的误差进行反馈校正,利用序列二次规化算法在线求解包含限制约束的预测控制问题。在某型直升机/涡轴发动机综合平台的仿真环境中进行了直升机大幅度机动飞行仿真验证,结果表明:该模型预测控制器相比于传统串级控制具有更好的控制品质,可显著降低动力涡轮转速超调/下垂量。 相似文献
7.
基于支持向量经验模态分解的故障率时间序列预测 总被引:1,自引:0,他引:1
针对故障率时间序列的非线性与非平稳特性,提出一种基于支持向量经验模态分解(SVEMD)的预测方法。首先,将故障率时间序列分解为多个固有模态函数(IMF)与一个余量(RF),利用最小二乘支持向量机(LSSVM)预测时间序列两端的局部极值点,以抑制传统经验模态分解(EMD)的边缘效应;同时以LSSVM回归方式形成包络线,以取代传统EMD中的三次样条插值;然后,建立各IMF与RF的预测模型;最终,将各IMF与RF的预测结果相加以获得故障率时间序列的预测结果。仿真结果表明,该方法的预测精度较传统基于EMD的预测方法与单一预测方法有显著提高,可实现对故障率的准确预测。 相似文献
8.
在分析已有的Sage-Husa自适应滤波算法的基础上,本文首先推导了两种量测噪声自适应估计方法的等价性.为充分利用组合系统中已知的部分量测噪声参数,提高滤波稳定性和精度,研究了基于序贯结构的Sage-Husa自适应滤波算法;当组合系统测量噪声参数均为已知时,为降低算法复杂度,提高Sage-Husa自适应滤波的鲁棒性,加入协方差匹配的方法对序贯结构的Sage-Husa自适应滤波算法进行改进;通过在序贯结构下采用相应的信息融合策略,充分利用组合系统的输出信息.将两种算法分别应用于MIMU/GPS/磁强计组合系统中,基于跑车实验的离线数据分析表明,第一种滤波算法的滤波稳定性较标准自适应算法在滤波稳定性上有明显提高;第二种改进的滤波算法既降低了算法复杂度,又提高了抗野值效果,有效保持了组合系统在干扰状态下的导航精度. 相似文献
9.
嵌入维数自适应最小二乘支持向量机状态时间序列预测方法 总被引:3,自引:0,他引:3
针对航空发动机状态时间序列预测中嵌入维数难于有效选取的问题,提出一种基于嵌入维数自适应最小二乘支持向量机(LSSVM)的预测方法.该方法将嵌入维数作为影响状态时间序列预测精度的重要参数,以交叉验证误差为评价准则,利用粒子群优化(PSO)进化搜索LSSVM预测模型的最优超参数与嵌入维数,同时通过矩阵变换原理提高交叉验证过程的计算效率,并最终建立优化后的LSSVM预测模型.航空发动机排气温度(EGT)预测实例表明,该方法可自适应选取适用于状态时间序列预测的最优嵌入维数且预测精度高,适用于航空发动机状态时间序列预测. 相似文献
10.
用结构自适应神经网络预测航空发动机性能趋势 总被引:9,自引:1,他引:8
将航空发动机作为复杂非线性系统考虑,运用神经网络超强的非线性映射能力和非线性时间序列分析的相空间重构理论,建立航空发动机性能趋势预测的神经网络模型,同时,针对神经网络的结构设计困难问题,建立了基于遗传算法的结构自适应神经网络预测模型,实现了神经网络结构的优化。最后,利用三组民航飞机发动机的性能数据进行了预测分析,验证了利用结构自适应神经网络对航空发动机性能趋势进行预测的有效性。 相似文献