首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Within the Multi-GNSS Pilot Project (MGEX) of the International GNSS Service (IGS), precise orbit and clock products for the BeiDou-3 global navigation satellite system (BDS-3) are routinely generated by a total of five analysis centers. The processing standards and specific properties of the individual products are reviewed and the BDS-3 orbit and clock product performance is assessed through direct inter-comparison, satellite laser ranging (SLR) residuals, clock stability analysis, and precise point positioning solutions. The orbit consistency evaluated by the signal-in-space range error is on the level of 4–8 cm for the medium Earth orbit satellites whereas SLR residuals have RMS values between 3 and 9 cm. The clock analysis reveals sytematic effects related to the elevation of the Sun above the orbital plane for all ACs pointing to deficiencies in solar radiation pressure modeling. Nevertheless, precise point positioning with the BDS-3 MGEX orbit and clock products results in 3D RMS values between 7 and 8 mm.  相似文献   

2.
Spaceborne GPS receivers are used for real-time navigation by most low Earth orbit (LEO) satellites. In general, the position and velocity accuracy of GPS navigation solutions without a dynamic filter are 25 m (1σ) and 0.5 m/s (1σ), respectively. However, GPS navigation solutions, which consist of position, velocity, and GPS receiver clock bias, have many abnormal excursions from the normal error range for space operation. These excursions lessen the accuracy of attitude control and onboard time synchronization. In this research, a new onboard orbit determination algorithm designed with the unscented Kalman filter (UKF) was developed to improve the performance. Because the UKF is able to obtain the posterior mean and covariance accurately by using the second-order Taylor series expansion through the sampled sigma points that are propagated by using the true nonlinear system, its performance can be better than that of the extended Kalman filter (EKF), which uses the linearized state transition matrix to predict the covariance. The dynamic models for orbit propagation applied perturbations due to the 40 × 40 geo-potential, the gravity of the Sun and Moon, solar radiation pressure, and atmospheric drag. The 7(8)th-order Runge–Kutta numerical integration was applied for orbit propagation. Two types of observations, navigation solutions and C/A code pseudorange, can be used at the user’s discretion. The performances of the onboard orbit determination were verified using real GPS data of the CHAMP and KOMPSAT-2 satellites. The results of the orbit determination were compared with the precision orbit ephemeris (POE) of the CHAMP and KOMPSAT-2 satellites.  相似文献   

3.
The BeiDou global navigation satellite system (BDS-3) has established the Ka-band inter-satellite link (ISL) to realize a two-way ranging function between satellites, which provides a new observation technology for the orbit determination of BDS-3 satellites. Therefore, this study presents a BDS satellite orbit determination model based on ground tracking station (GTS) observations and ISL ranging observations firstly to analyze the impact of the ISL ranging observations on the orbit determination of BDS-3 satellites. Subsequently, considering the data fusion processing, the variance component estimation (VCE) algorithm is applied to the parameter estimation process of the satellite orbit determination. Finally, using the measured data from China’s regional GTS observations and BDS-3 ISL ranging observations, the effects of ISL ranging observations on the orbit determination accuracy of BDS-3 satellites are analyzed. Moreover, the impact of the VCE algorithm on the fusion data processing is evaluated from the aspects of orbit determination accuracy, Ka-band hardware delay parameter stability, and ISL ranging observation residuals. The results show that for China’s regional GTSs, the addition of BDS-3 ISL ranging observations can significantly improve the orbit determination accuracy of BDS-3 satellites. The observed orbit determination accuracy of satellite radial component is improved from 48 cm to 4.1 cm. In addition, when the initial weight ratio between GTS observations and ISL ranging observations is not appropriate, the various indicators which include orbit determination accuracy, ISL hardware delay, and ISL observation residuals were observed to have improved after the adjustment of the VCE algorithm. These results validate the effectiveness of the VCE algorithm for the fusion data processing of the GTS observations and ISL ranging observations.  相似文献   

4.
基于单频星载GPS数据的低轨卫星精密定轨   总被引:1,自引:0,他引:1  
为满足搭载单频GPS接收机低轨卫星的精密定轨需求以及深化单频定轨研究,文中解决了单频星载GPS数据的周跳探测问题,并利用“海洋二号”(HY-2A)卫星及“资源三号”(ZY-3)卫星的单频星载GPS实测数据采用两种方法确定了二者的简化动力学轨道,并通过观测值残差分析、与双频精密轨道比较、激光测卫数据检核等方法对所得轨道精度进行评定。结果表明,在不考虑电离层延迟影响的情况下,HY-2A卫星定轨精度为2~3dm,ZY-3卫星为1m左右;而采用半和改正组合消除电离层延迟一阶项影响后,二者定轨精度均显著提高,HY-2A卫星三维精度提高至1dm左右,ZY-3卫星提高至1~2dm。文章的研究成果表明,搭载单频GPS接收机的低轨卫星也可获得厘米级的定轨精度。  相似文献   

5.
The FY3C and FY3D satellites were equipped with global navigation satellite occultation detector (GNOS) receivers that received both GPS and BDS-2 signals. For further improving precise orbit determination (POD) precisions, we estimated receiver GPS and BDS signal phase center variations (PCV) models with 2° and 5° resolutions and set the different weights for GPS and BDS-2 observations in the combined POD. The BDS-based POD precision using BDS-2 satellite antenna phase center offset (PCO) values from the China Satellite Navigation Office (CSNO) are not as accurate as those obtained from the International GNSS Service (IGS) Multi-GNSS experiments project (MGEX). The estimated receiver GPS and BDS PCV models with 2° and 5° resolutions were estimated from the GPS phase residuals of GPS-based POD and BDS phase residuals of combined POD, respectively. In most cases, the POD precisions using the estimated PCVs with 2° resolution are superior to those with 5° resolution. The precisions of the BDS-based POD and combined POD were both improved by introducing the receiver BDS PCV models. The weighting for GPS and BDS-2 observations can further improve the precision of the combined POD. The tested results of selected weights are better than those with equal weight in the combined POD. The experiment results show that orbital precisions of FY3C are worse than those of FY3D.  相似文献   

6.
To realize the smooth transition from regional BeiDou Navigation Satellite System (BDS-2) to the global one (BDS-3), the integration of BDS-2 and BDS-3 is important for providing continuous, stable and reliable positioning, navigation and timing (PNT) services for global users. This work used 154 globally distributed multi-GNSS (Global Navigation Satellite System) experiment stations spanning 30 days to analyze the satellite availability and positioning performance of uncombined precise point positioning (UC-PPP) under current BDS-2 and BDS-3 constellations. We focused on three issues: the influence of BDS-3 receiver tracking abilities, the positioning performance among different areas, and the benefit of multi-frequency observations. The results show that the elliptical zone caused by poor BDS-2 satellite visibility is disappeared when the evenly distributed BDS-3 medium earth orbit satellites are introduced. When BDS-3 are integrated with BDS-2, the area with the Position Dilution of Precision (PDOP) less than 2 can be expanded to 75° S-75° N and 30° E-150° W. The positioning performance of BDS-3 and BDS-2/BDS-3 UC-PPP are seriously affected by the receiver tracking abilities of BDS-3 signals. When the maximum pseudo-random noise sequences (PRNs) of BDS-3 satellites tracked by stations are within 30 or 37, the positioning accuracy of static UC-PPP can be improved by 22.94% or 8.27% due to the integration of BDS-2 and BDS-3. Besides, the most improvement of BDS-2 and BDS-3 integration is achieved in Asia-Pacific regions, especially for the kinematic UC-PPP or the poor receiver tracking abilities of BDS-3. Similar to the multi-frequency BDS-2 UC-PPP, the benefit of multi-frequency signals for BDS-3 or BDS-2/BDS-3 UC-PPP is also non-vital. The three-dimensional positioning accuracy of BDS-2/BDS-3 multi-frequency UC-PPP in static mode and kinematic mode are 2.24 cm and 5.39 cm, while the corresponding convergence time are 49.62 min and 73.80 min, respectively. Compared with BDS-2, both the positioning accuracy and the convergence time of BDS-2/BDS-3 joint UC-PPP are improved by approximately over 50%, which indicates that BDS-3 has a great potential to provide high-quality PNT services as other global navigation satellite systems.  相似文献   

7.
The BeiDou navigation satellite system (BDS) comprises geostationary earth orbit (GEO) satellites as well as inclined geosynchronous orbit (IGSO) and medium earth orbit (MEO) satellites. Owing to their special orbital characteristics, GEO satellites require frequent orbital maneuvers to ensure that they operate in a specific orbital window. The availability of the entire system is affected during the maneuver period because service cannot be provided before the ephemeris is restored. In this study, based on the conventional dynamic orbit determination method for navigation satellites, multiple sets of instantaneous velocity pulses parameters which belong to one of pseudo-stochastic parameters were used to simulate the orbital maneuver process in the orbital maneuver arc and establish the observed and predicted orbits of the maneuvered and non-maneuvered satellites of BeiDou regional navigation satellite system (BDS-2) and BeiDou global navigation satellite system (BDS-3). Finally, the single point positioning (SPP) technology was used to verify the accuracy of the observed and predicted orbits. The orbit determination accuracy of maneuvered satellites can be greatly improved by using the orbit determination method proposed in this paper. The overlapping orbit determination accuracy of maneuvered GEO satellites of BDS-2 and BDS-3 can improve 2–3 orders of magnitude. Among them, the radial orbit determination accuracy of each maneuvered satellite is basically better than 1 m. simultaneously, the combined orbit determination of the maneuvered and non-maneuvered satellites does not have a great impact on the orbit determination accuracy of the non-maneuvered satellites. Compared with the multi GNSS products (indicated by GBM) from the German Research Centre for Geosciences (GFZ), the impact of adding the maneuvered satellites on the orbit determination accuracy of BDS-2 satellites is less than 9 %. Furthermore, the orbital recovery time and the service availability period are significantly improved. When the node of the predicted orbit is traversed approximately 3 h after the maneuver, the accuracy of the predicted orbit of the maneuvered satellite can reach that of the observed orbit. The SPP results for the BDS reached a normal level when the node of the predicted orbit was 2 h after the maneuver.  相似文献   

8.
BeiDou-3 Navigation Satellite System (BDS-3) satellites are equipped with the new generation GNSS signals B1C and B2a, which support the interoperability with GPS and Galileo systems. In this study, the pseudo-range multipath error and carrier phase observation noise of the BDS-3 B1C and B2a signals were evaluated based on zero baseline measurements from the day of year (DOY) 113 to 116, 2020. Further, the precision and performance of the single point positioning (SPP) and precise point positioning (PPP) are assessed at 9 stations. This assessment manifests that the standard deviations (STDs) of the pseudo-range multipath error are about 0.09 ~ 0.22 m, while STDs of the carrier phase observation noise are about 0.075 mm. For the single-frequency SPP, its positioning precision is about 2.03 ~ 4.85 m and 3.29 ~ 10.73 m at the 99.99% confidence level in horizontal and vertical directions, respectively, while the dual-frequency SPP precision is about 1.92 ~ 8.02 m and 4.81 ~ 12.77 m in horizontal and vertical directions, respectively. For the daily static PPP, the convergence time is about 20 ~ 30 min, while the daily positioning precision can reach 1.38 ~ 4.42 cm and -1.31 ~ 4.34 cm in horizontal and vertical directions, respectively. In general, the quality and the SPP and PPP performance of the BDS-3 B1C&B2a signals are comparable to the GPS and Galileo.  相似文献   

9.
This paper discusses the concept of using inter-satellite ranging (ISR) measurements of the satellites of a Global Navigation Satellite System (GNSS) for autonomous broadcast ephemeris improvement. Firstly the inter-satellite ranging is modeled to obtain the clock and orbit error observables. The orbit error observable is analyzed and its observation equation is provided. Both least-squares estimation and Kalman Filter approach are proposed to estimate satellite clock errors, while solely the Kalman Filter is used to estimate the orbit errors. All these algorithms are validated using true broadcast ephemeris and precise ephemeris of GPS along with the simulated ranging noise. Based on the settings adopted in the test, the result shows that the orbit accuracy of the precise ephemeris using the proposed method is around 20–50 cm and the accuracy of the satellite clock can reach 20 cm while ranging noise is assumed to be 0.45 m (1σ). The User Ranging Error (URE) is improved from 1.05 m to 0.34 m, which is comparable to other sources of precise ephemeris or even better, while the proposed approach has many advantages such as compatibility and accessibility. It is also noted that the proposed method may provide useful functions in determining inter-constellation coordinate and time differences autonomously for better interoperability and interchangeability in the multi GNSS operation era.  相似文献   

10.
Satellite autonomous navigation is an important function of the BeiDou-3 navigation System (BDS-3). Satellite autonomous navigation means that the navigation satellite uses long-term forecast ephemeris and Inter-Satellite Link (ISL) measurements to determinate its own spatial position and time reference without the support of the ground Operation and Control System (OCS) for a long time to ensure that the navigation system can normally maintain the time and space reference. This paper aims to analyze the feasibility of distributed autonomous navigation algorithms. For the first time, a ground parallel autonomous navigation test system (GPANTS) is built. The performance of distributed autonomous navigation is then analyzed using the two-way ISL ranging of BDS-3 satellites. First, the BDS simulation platform and the GPANTS are introduced. Then, the basic principles of distributed satellite autonomous orbit determination and time synchronization based on ISL measurements are summarized. Preliminary evaluation of the performance of the BDS-3 constellation autonomous navigation service under ideal conditions through simulation data. Then the performance of autonomous navigation for 22 BeiDou-3 satellites using ISL measurements is evaluated. The results show that when satellites operate autonomously for 50 days without the support of any ground station, the User Range Error (URE) of autonomous orbit determination is better than 3 m, and the time synchronization accuracy is better than 4 ns.  相似文献   

11.
随着技术的发展,通过星载GPS接收机直接确定卫星星历成为卫星定位的一个重要手段.GPS接收机获取的卫星星历数据是某一时刻的瞬时状态,要获取连续的卫星星历数据还需要进一步处理.常用的处理方法有几何法与动力学法.在GPS接收机给定瞬时星历频率较低的情况下,几何法的计算误差比较大,特别是只有一组瞬时星历时,无法用几何法进行轨道的外推.在分析地球资源卫星轨道特点的基础上,提出一种新的轨道缩减动力模型,该模型将卫星运动在直角坐标系中分解为简谐运动,利用模型实现了轨道外推的算法.通过试验验证,该算法可以达到较高的精度.   相似文献   

12.
The state-space representation (SSR) product of satellite orbit and clock is one of the most essential corrections for real-time precise point positioning (RTPPP). When it comes to PPP ambiguity resolution (PPP-AR), the fractional cycle bias (FCB) matters. The Japan Aerospace Exploration Agency (JAXA) has developed a multi-GNSS (i.e., global navigation satellite system) advanced demonstration tool for orbit and clock analysis (MADOCA), providing free and precise orbit and clock products. Because of the shortage of relevant studies on performance evaluation, this paper focuses on the performance assessment of RTPPP and PPP-AR by real-time and offline MADOCA products. To begin with, the real-time MADOCA products are evaluated by comparing orbit and clock with JAXA final products, which gives an objective impression of the correction. Second, PPP tests in static and simulated kinematic mode are conducted to further verify the quality of real-time MADOCA products. Finally, the offline MADOCA products are assessed by PPP and PPP-AR comparisons. The results are as follows: (1) Orbit comparisons produced an average error of about 0.04–0.13 m for the global positioning system (GPS), 0.14–0.16 m for the global navigation satellite system (GLONASS), and 0.07–0.08 m for the quasi-zenith satellite system (QZSS). The G15 satellite had the most accurate orbit, with a difference of 0.04 m between the JAXA orbit products and MADOCA’s counterpart, while the R07 satellite had the least accurate orbit with a difference of 0.16 m. Clock products had an accuracy of 0.4–1.3 ns for GPS, 1.4–1.6 ns for GLONASS, and 0.7–0.8 ns for QZSS in general. The G15 satellite had the most accurate clock with a difference of only 0.40 ns between the JAXA clock products and MADOCA products, and the R07 satellite had the least accurate clock with a difference of 1.55 ns. The orbit and clock products for GLONASS performed worse than those of GPS and QZSS. (2) After convergence, the positioning accuracy was 3.0–8.1 cm for static PPP and 8.1–13.7 cm for kinematic PPP when using multi-GNSS observations and precise orbit and clock products. The PFRR station performed the good performance both in static and kinematic mode with an accuracy of 2.99 cm and 8.08 cm, respectively, whereas the CPNM station produced the worst static performance with an error of 8.09 cm, and the ANMG station produced the worst kinematic performance with a counterpart of 13.69 cm. (3) The PPP-AR solution was superior to the PPP solution, given that, with respect to PPP, post-processing PPP-AR improved the positioning accuracy and convergence time by 13–32 % (3–89 %) in GPS-only mode by 2–15 % (5–60 %) in GPS/QZSS mode. Thus, we conclude that the current MADOCA products can provide SSR corrections and FCB products with positioning accuracy at the decimeter or even centimeter level, which could meet the demands of the RTPPP and PPP-AR solutions.  相似文献   

13.
A new strategy of precise orbit determination (POD) for GEO (Geostationary Earth Orbit) satellite using SATRE (SAtellite Time and Ranging Equipment) is presented. Two observation modes are proposed and different channels of the same instruments are used to construct different observation modes, one mode receiving time signals from their own station and the other mode receiving time signals from each other for two stations called pairs of combined observations. Using data from such a tracking network in China, the results for both modes are compared. The precise orbit determination for the Sino-1 satellite using the data from 6 June 2005 to 13 June 2005 has been carried out in this work. The RMS (Root-Mean-Square) of observing residuals for 3-day solutions with the former mode is better than 9.1 cm. The RMS of observing residuals for 3-day solutions with the latter mode is better than 4.8 cm, much better than the former mode. Orbital overlapping (3-day orbit solution with 1-day orbit overlap) tests show that the RMS of the orbit difference for the former mode is 0.16 m in the radial direction, 0.53 m in the along-track direction, 0.97 m in the cross-track direction and 1.12 m in the 3-dimension position and the RMS of the orbit difference for the latter mode is 0.36 m in the radial direction, 0.89 m in the along-track direction, 1.18 m in the cross-track direction and 1.52 m in the 3-dimension position, almost the same as the former mode. All the experiments indicate that a meter-level accuracy of orbit determination for geostationary satellite is achievable.  相似文献   

14.
Intra-system biases (ISBs) between BDS-2 and BDS-3 are of critical importance when combining observations from the BDS-2 and BDS-3 systems, which is meaningful to fully take advantage of the BDS positioning capability. Meanwhile, ISBs should also be considered in the estimation of BDS uncalibrated phase delays (UPDs). In this research, we present a BDS-2/BDS-3 joint-processing scheme, as well as a method for estimating BDS UPDs. The characteristics of ISBs and the quality of BDS UPDs are analyzed based on 30-day data from 130 multi-GNSS experimental (MGEX) stations. Our results indicate that the ISBs are related to the type and version of the receiver. The ISBs can be regarded as constant across the course of a given day, and the mean standard deviation (STD) values of ISBs over one month for different types of receivers are generally within 0.2 m. Moreover, to assess the quality of UPD products, the residuals of the estimated UPDs and the utilization rates of the observation data are computed. The results show that the quality of BDS UPDs can be improved by correcting the satellite-induced pseudo-range variations, and by estimating the wide-lane (WL) UPD difference between BDS-2 and BDS-3. The average RMS values of the estimated residuals of WL UPD and narrow-lane (NL) UPD are 0.07 and 0.09 cycles, respectively; moreover, the utilization rate of the observation data of WL UPD and NL UPD can reach above 90 %. The performance of BDS precise point positioning (PPP) and PPP ambiguity resolution (PPP-AR) is analyzed in terms of positioning accuracy and convergence performance in both the static and kinematic modes. Compared with PPP ambiguity-float solutions, the positioning accuracy of PPP-AR is significantly improved, especially in the east direction. The impact of ISBs on PPP and PPP-AR is also analyzed, and the results indicate that ISBs can improve the convergence speed of float PPP, but can be disregarded in PPP-AR.  相似文献   

15.
Differential Code Bias (DCB) is an essential correction that must be provided to the Global Navigation Satellite System (GNSS) users for precise position determination. With the continuous deployment of Low Earth Orbit (LEO) satellites, DCB estimation using observations from GNSS receivers onboard the LEO satellites is drawing increasing interests in order to meet the growing demands on high-quality DCB products from LEO-based applications, such as LEO-based GNSS signal augmentation and space weather research. Previous studies on LEO-based DCB estimation are usually using the geometry-free combination of GNSS observations, and it may suffer from significant leveling errors due to non-zero mean of multipath errors and short-term variations of receiver code and phase biases. In this study, we utilize the uncombined Precise Point Positioning (PPP) model for LEO DCB estimation. The models for uncombined PPP-based LEO DCB estimation are presented and GPS observations acquired from receivers onboard three identical Swarm satellites from February 1 to 28, 2019 are used for the validation. The results show that the average Root Mean Square errors (RMS) of the GPS satellite DCBs estimated with onboard data from each of the three Swarm satellites using the uncombined PPP model are less than 0.18 ns when compared to the GPS satellite DCBs obtained from IGS final daily Global Ionospheric Map (GIM) products. Meanwhile, the corresponding average RMS of GPS satellite DCBs estimated with the conventional geometry-free model are 0.290, 0.210, 0.281 ns, respectively, which are significantly larger than those obtained with the uncombined PPP model. It is also noted that the estimated GPS satellite DCBs by Swarm A and C satellites are highly correlated, likely attributed to their similar orbit type and space environment. On the other hand, the Swarm receiver DCBs estimated with uncombined PPP model, with Standard Deviation (STD) of 0.065, 0.037 and 0.071 ns, are more stable than those obtained from the official Swarm Level 2 products with corresponding STD values of 0.115, 0.101, and 0.109 ns, respectively. The above indicates that high-quality DCB products can be estimated based on uncombined PPP with LEO onboard observations.  相似文献   

16.
Both single and dual frequency GPS relative navigation filters may benefit from proper predictions of single differenced ionospheric delays. In this article, the single differenced ionospheric delays of GPS observations are predicted for the GRACE formation during the switch manoeuvre.Two prediction methods are considered. The first is based on a Taylor expansion to first order of a mapping function that maps slant total electron content measurements to vertical total electron content estimates. The second method fits a shape profile through undifferenced ionospheric data available. It then raytraces through this profile to estimate the difference in total electron content along the path of the GPS signals.Continuously changing ionospheric conditions hamper the assessment of the quality of the predictions. Comparison of both methods shows that the raytracing method performs better. The difference of predictions and measurements generally shows a smaller RMS than the measurements alone. However, both methods suffer from a number of systematically unpredicted observations, which arise from small unaccounted differential variations in electron densities along the path of the GPS signals. These prediction methods perform better when spacecraft separation is small. Baselines considered here range from tens of kilometres down to several hundred metres. When smallest spacecraft separation occurs (0.4 km), the single differenced ionospheric delays exhibit RMS values of 0.0089 m. The first method shows a difference between measurements and predictions with an RMS of 0.0081 m. For the second method the difference RMS is found to be 0.0067 m.  相似文献   

17.
低轨卫星的实时精密定轨能够极大拓展其完成复杂科学任务的能力,例如实时环境监测、机动控制和卫星自主导航等.本文根据几何法实时精密定轨模型,提出了附加LEO先验轨道约束从而改善实时定轨的精度、收敛速度和稳定性的构想.分别采用广播星历、超快速星历预报部分和实时精密星历,设计了6种实时定轨方案,并利用Swarm-A,B,C星7天的观测数据进行方案验证与分析.结果表明,使用广播星历、IGU和IGC星历的方案精度递增,附加先验轨道约束能够进一步提升精度.使用IGC星历并附加标准差为1m的先验轨道约束后,在径向、切向和法向的定轨精度分别达到6.12cm,5.55cm和4.98cm.此外,附加先验轨道约束能够显著提升收敛速度,使用IGC星历平均收敛时间约为31min,附加标准差为1m的先验轨道约束后收敛仅需约4min.   相似文献   

18.
Driven by the GMES (Global Monitoring for Environment and Security) and GGOS (Global Geodetic Observing System) initiatives the user community has a strong demand for high-quality altimetry products. In order to derive such high-quality altimetry products, precise orbits for the altimetry satellites are a necessity. With the launch of the TOPEX/Poseidon mission in 1992 a still on-going time series of high-accuracy altimetry measurements of ocean topography started, continued by the altimetry missions Jason-1 in 2001 and Jason-2/OSTM in 2008. This paper contributes to the on-going orbit reprocessing carried out by several groups and presents the efforts of the Navigation Support Office at ESA/ESOC using its NAPEOS software for the generation of precise and homogeneous orbits referring to the same reference frame for the altimetry satellites Jason-1 and Jason-2. Data of all three tracking instruments on-board the satellites (beside the altimeter), i.e. GPS, DORIS, and SLR measurements, were used in a combined data analysis. About 7 years of Jason-1 data and more than 1 year of Jason-2 data were processed. Our processing strategy is close to the GDR-C standards. However, we estimated slightly different scaling factors for the solar radiation pressure model of 0.96 and 0.98 for Jason-1 and Jason-2, respectively. We used 30 s sampled GPS data and introduced 30 s satellite clocks stemming from ESOC’s reprocessing of the combined GPS/GLONASS IGS solution. We present the orbit determination results, focusing on the benefits of adding GPS data to the solution. The fully combined solution was found to give the best orbit results. We reach a post-fit RMS of the GPS phase observation residuals of 6 mm for Jason-1 and 7 mm for Jason-2. The DORIS post-fit residuals clearly benefit from using GPS data in addition, as the DORIS data editing improves. The DORIS observation RMS for the fully combined solution is with 3.5 mm and 3.4 mm, respectively, 0.3 mm better than for the DORIS-SLR solution. Our orbit solution agrees well with external solutions from other analysis centers, as CNES, LCA, and JPL. The orbit differences between our fully combined orbits and the CNES GDR-C orbits are of about 0.8 cm for Jason-1 and at 0.9 cm for Jason-2 in the radial direction. In the cross-track component we observe a clear improvement when adding GPS data to the POD process. The 3D-RMS of the orbit differences reveals a good orbit consistency at 2.7 cm and 2.9 cm for Jason-1 and Jason-2. Our resulting orbit series for both Jason satellites refer to the ITRF2005 reference frame and are provided in sp3 file format on our ftp server.  相似文献   

19.
The primary system of Chinese global BeiDou satellite system (BDS-3) was completed to provide global services on December 27, 2018; this was a key milestone in the development process for BDS in terms of its provision of global services. Therefore, this study analyzed the current performance of BDS-3, including its precise positioning, velocity estimation, and time transfer (PVT). The datasets were derived from international GNSS monitoring and assessment system (iGMAS) tracking networks and the two international time laboratories in collaboration with the International Bureau of Weights and Measures (BIPM). With respect to the positioning, the focus is on the real-time kinematic (RTK) positioning and precise point positioning (PPP) modes with static and kinematic scenarios. The results show that the mean available satellite number is 4.8 for current BDS-3 system at short baseline XIA1–XIA3. The RTK accuracy for three components is generally within cm level; the 3D mean accuracy is 8.9 mm for BDS-3 solutions. For the PPP scenarios, the convergence time is about 4 h for TP01 and BRCH stations in two scenarios. After the convergence, the horizontal positioning accuracy is better than cm level and the vertical accuracy nearly reaches the 1 dm level. With respect to kinematic scenarios, the accuracy stays at the cm level for horizontal components and dm level for the vertical component at two stations. In terms of velocity estimation, the horizontal accuracy stays at a sub-mm level, and the vertical accuracy is better than 2 mm/s in the BDS-3 scenario, even in the Arctic. In terms of time and frequency transfer, the noise level of BDS-3 time links can reach 0.096 ns for long-distances link NT01–TP02 and 0.016 ns for short-distance links TP01–TP02. Frequency stability reaches 5E–14 accuracy when the averaging time is within 10,000 s for NT01–TP02 and 1E–15 for TP01–TP02.  相似文献   

20.
With the improvement in the service accuracy and expansion of the application scope of satellite navigation systems, users now have high demands for system integrity that are directly related to navigation safety. As a crucial index to measure the reliability of satellite navigation systems, integrity is the ability of the system to send an alarm when an abnormity occurs. The new-generation Beidou Navigation Satellite System (BDS-3) prioritized the upgrading of system integrity as an important objective in system construction. Because the system provides both basic navigation and satellite-based augmentation system (SBAS) services by the operational control system, BDS-3 adopts an integrated integrity monitoring and processing strategy that applies satellite autonomous integrity monitoring and ground-based integrity monitoring for both the basic navigation service and SBAS navigation service. BDS-3 also uses an improved and refined integrity parameter system to provide slow, fast and real-time integrity parameters for basic navigation, and provide SBAS-provided integrity information messages in accordance with Radio Technical Commission for Aeronautics (RTCA) specification and dual frequency, multi-constellation (DFMC) specification to support the SBAS signal frequency, single constellation operation and DFMC operation respectively. The performance of BDS-3 system integrity monitoring is preliminarily verified during on-orbit testing in different states, including normal operation, satellite clock failure and satellite ephemeris failure. The results show that satellite autonomous integrity monitoring, ground-based integrity monitoring and satellite-based augmentation all correctly work within the system. Satellite autonomous integrity monitoring can detect satellite clock failure but not satellite orbit failure. However, ground-based integrity monitoring can detect both. Moreover, the satellite-based augmentation integrity system monitors the differential range error after satellite ephemeris and clock error corrections based on user requirements. Compared to the near minute-level time-to-alert capability of ground-based integrity monitoring, satellite autonomous integrity monitoring reduces the system alert time to less than 4 s. With a combined satellite-ground monitoring strategy and the implementation of different monitoring technologies, the BDS-3 integrity of service has been considerably improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号