共查询到20条相似文献,搜索用时 0 毫秒
1.
D. Mori A.V. Koustov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
In this study SuperDARN Cross Polar Cap Potentials (CPCPs), collected over the year 2000, are investigated with a goal to statistically assess its relationship with various parameters of the solar wind and Interplanetary Magnetic Field (IMF). We show that SuperDARN CPCPs tend to cluster around discrete values, prescribed by the statistical model, unless the amount of points on each convection map is above ∼300. By selecting CPCP data obtained with radar coverage of >300 points, we investigate the CPCP relationship with IMF Bz and By, IMF clock angle, solar wind speed and dynamic pressure, Alfven velocity, Alfven–Mach number, and interplanetary electric field. Some reported tendencies, such as dependence upon IMF Bz, were found to be consistent with measurements by other instruments. We demonstrate that SuperDARN CPCPs show consistency with several theories/empirical models (predicting the CPCP) in terms of a linear trend but, on average, the slopes of the dependencies are at least two times smaller. We also determine the coupling function, out of those published in literature, best correlating with SuperDARN CPCPs. 相似文献
2.
B.M. Pilkerton M.R. Collier T.E. Moore 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(12):2152-2156
We report results of a statistical study correlating ionized solar wind (ISW) fluxes observed by ACE during late 2000 and throughout 2001 with neutral solar wind (NSW) fluxes observed by IMAGE/LENA over the same period. The average correlation coefficient between the neutral and ionized solar wind is 0.66 with correlations greater than 0.80 occurring about 29% of the time. Correlations appear to be driven by high solar wind flux variability, similar to results obtained by in situ multi-spacecraft correlation studies. In this study, however, IMAGE remains inside the magnetosphere on over 95% of its orbits. As a function of day of year, or equivalently ecliptic longitude, the slope of the relationship between the neutral solar wind flux and the ionized solar wind flux shows an enhancement near the upstream direction, but the symmetry point appears shifted toward higher ecliptic longitudes than the interstellar neutral (ISN) flow direction by about 20°. The estimated peak interstellar neutral upstream density inside of 1 AU is about 7 × 10−3 cm−3. 相似文献
3.
L.Q. Zhang C. Wang J.Y. Wang A.T.Y. Lui 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(10):3077-3087
Utilizing ACE satellite observations from 1998 to 2009, we performed the elaborate study on the properties of the clock angle θCA (arctan(By/Bz) (?90° to 90°) of the interplanetary magnetic field (IMF) in the solar wind at 1?AU. The solar wind with northward IMF (NW-IMF) and southward IMF (SW-IMF) are analyzed, independently. Statistical analysis shows that the solar wind with SW-IMF and NW-IMF has similar properties in general, including their durations, the IMF Bz and By components, and the IMF θCA. Then, the solar wind with NW-IMF (SW-IMF) is classified into five different temporal scales according to the duration of the NW-IMF (SW-IMF), i.e., very-short wind of 10–30?min, short-scale wind of 0.5–1?h, moderate-scale wind of 1–3?h, long-scale wind of 3–5?h, and super-long wind >5?h. Our analysis reveals that the IMF θCA has a distinct decrease with increase of the temporal scale of the solar wind. Next, the solar wind is classified into two groups, i.e., the high-speed solar wind (>450?km/s) and the low-speed solar wind (<450?km/s). Our analysis indicates that the IMF θCA depends highly on the solar wind speed. Statistically, high-speed solar wind tends to have larger IMF θCA than low-speed solar wind. The evolutions of the solar wind and IMF with the solar activity are further studied, revealing no clear solar variation of the IMF θCA. Finally, we analyze the monthly variation of the IMF θCA. Superposed epoch result strongly suggests the seasonal variation of the IMF θCA. 相似文献
4.
H.S. Ahluwalia Y. Kamide 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(12):2119-2123
We have studied annual frequency distribution of the Forbush decreases for three solar cycles (20, 21, 22); most are associated with the fast ICMEs and SSCs. The frequency varies in step with the solar cycle but the distribution has a notable gap embedded in it, near the maximum of the cycle leading to two peaks in Forbush decreases per cycle. We show that the gap coincides with the epoch of solar polar field reversal. There is an indication of an odd/even cycle effect in the frequency distribution of Forbush decreases and the associated SSCs. We find that two peaks in Forbush decrease and SSC distributions are separated by the Gnevyshev gap; second peaks occur well before the onset of the high-speed streams in the descending phase of a cycle which do not cause Forbush decreases but do contribute to a peak in the geomagnetic activity index Ap. We compare Forbush decrease and SSC distributions with the corresponding distribution of the solar wind electric field and find that a large amplitude of the electric field of itself does not cause a Forbush decrease to occur unless it is also associated with a fast ICME/SSC. 相似文献
5.
N.L. Borodkova J.B. Liu Z.H. Huang G.N. Zastenker 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(8):1220-1225
We present a comparison of large and sharp solar wind dynamic pressure changes, observed by several spacecraft, with fast disturbances in the magnetospheric magnetic field measured by the GOES-8, 9 and 10 geosynchronous satellites. Almost 400 solar wind pressure changes in the period 1996–2003 were selected for this study. Using the large statistics we confirmed that increases (decreases) in the dynamic pressure always results in increases (decreases) in the magnitude of geosynchronous Bz component. The amplitude of the geosynchronous Bz response strongly depends on the location of observer relative to the noon meridian, from the value of solar wind pressure before the disturbance arriving and firstly – from the amplitude of the pressure change. 相似文献
6.
C.T. Russell L. Jian 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(8):1177-1187
Understanding the physics of the various disturbances in the solar wind is critical to successful forecasts of space weather. The STEREO mission promises to bring us new and deeper understanding of these disturbances. As we stand on the threshold of the first results from this mission, it is appropriate to review what we know about solar wind disturbances. Because of their complementary nature we discuss both the disturbances that arise within the solar wind due to the stream structure and coronal mass ejecta and the disturbances that arise when the solar wind collides with planetary obstacles, such as magnetospheres. 相似文献
7.
Wiesław M. Macek 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
By using the false-nearest-neighbours method, we have argued that the deterministic component of solar wind plasma dynamics should be low-dimensional. In fact, the results we have obtained using the method of topological embedding indicate that the behaviour of the solar wind can be approximately described by a low-dimensional chaotic attractor in the inertial manifold, which is a subspace of system phase space. We have also shown that the multifractal spectrum of the solar wind attractor is consistent with that for the multifractal measure of the self-similar generalized weighted Cantor set with two different scaling parameters and one probability measure parameter responsible for nonuniform compression in phase space and multifractality. The values of the parameters fitted also demonstrate that the complex solar wind system could only be weakly non-conservative (small dissipation) and quantify nonlinear dynamics; some parts of the attractor in phase space are visited much more frequently than other parts. In addition, to quantify the multifractality of space plasma intermittent turbulence, we consider that generalized Cantor set also in the context of scaling properties of solar wind turbulence. We investigate the resulting multifractal spectrum of a one-dimensional phenomenological model of turbulence cascade depending on its parameters, especially for asymmetric scaling. In particular, we have shown that intermittent pulses are stronger for the cascade model with two different scaling parameters. Even thought solar wind turbulence appears to be rather space filling, a better agreement with the data is obtained, especially for the negative index of generalized dimensions. Therefore we argue that there is a need to use a two-scale asymmetric cascade model. We hope that this generalized multifractal model will be a useful tool for analysis of intermittent turbulence in space plasmas. We thus believe that fractal analysis of chaotic systems could lead us to a deeper understanding of their nature, and maybe even to predict their seemingly unpredictable behaviour. 相似文献
8.
W. Miyake Y. Saito H. Hayakawa A. Matsuoka 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2328-2332
The L5 point is a promising location for forecasting co-rotating high-speed streams in the solar wind arriving at the Earth. We correlated the solar wind data obtained by the Nozomi spacecraft in interplanetary space and by the Advanced Composition Explorer (ACE) at the L1 point, and found that the correlation is significantly improved from that of the 27-day recurrence of ACE data. Based on the correlation between the two spacecraft observations, we estimated the correlation of the solar wind velocity between the L5 point and at the Earth, and found that the correlation coefficient was about 0.78 in late 1999, while that of the 27-day recurrence was 0.51. Eighty-eight percent of the velocity difference falls within 100 km/s between the L5 point and the Earth. This demonstrates the potential capability of solar wind monitoring at the L5 point to forecast the geomagnetic disturbances 4.5 days in advance. 相似文献
9.
V.N. Alexeyev I.B. IevenkoS.G. Parnikov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
The occurrence rate of SAR arcs during 1997–2007 has been analyzed based on the photometric observations at the Yakutsk meridian (Maimaga station, corrected geomagnetic coordinates: 57°N, 200°E). SAR arcs appeared in 114 cases (∼500 h) during ∼370 nights of observations (∼3170 h). The occurrence frequency of SAR arcs increases to 27% during the growth phase of solar activity and has a clearly defined maximum at a decline of cycle 23. The SAR arc registration probability corresponds to the variations in geomagnetic activity in this solar cycle. The dates, intervals of UT, and geomagnetic latitudes of SAR arc observations at the Yakutsk meridian are presented. 相似文献
10.
11.
K. Issautier C. Perche S. Hoang C. Lacombe M. Maksimovic J.-L. Bougeret C. Salem 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,35(12):2141-2146
We present the solar wind plasma parameters obtained from the Wind spacecraft during more than nine years, encompassing almost the whole solar cycle 23. Since its launch in November 1994 Wind has frequently observed the in-ecliptic solar wind upstream of the Earth’s bow shock. The WIND/WAVES thermal noise receiver was specially designed to measure the in situ plasma thermal noise spectra, from which the electron density and temperature can be accurately determined. We present and discuss histograms of such measurements performed from 1994 to 2003. Using these large data sets, we study the density and core temperature variations with solar activity cycle and with different regimes of the solar wind. We confirm the anticorrelation of the electron density with the sunspot number, and obtain a positive correlation of the core temperature, with the sunspot number. 相似文献
12.
Valadis Katsikas George Exarhos Xenophon Moussas 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
In this paper we study the shape, extend and time variations of the solar wind transition surfaces using the Lima and Priest (1993) hydrodynamic model adequately adapted for the case of the solar wind flow. The transition surfaces, namely the Slow (Sonic), the Alfvén, and the Fast Magnetosonic surface, are important boundaries around the Sun and play a crucial role in the development of the solar wind and the structure of the inner heliosphere. We determine the shape and dimension of these surfaces as a function of heliographic latitude using measurements from Ulysses spacecraft, and we also study their temporal variation using data from spacecrafts at 1 AU (OMNI database). Furthermore, we establish their dependence with the solar activity, demonstrating their shape and location for the last two solar cycles. From this we noticed that the temporal variation of all transition surfaces follows the 11-year solar cycle. Finally, from the OMNI database, we have studied the temporal variation over the past 40 years of the plasma β parameter, the kinetic to magnetic and the kinetic to thermal energy ratios, at a distance of 1 AU from the Sun. 相似文献
13.
Nedeljko Todorović Dragana Vujović 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
In this paper we research the relationship between solar activity and the weather on Earth. This research is based on the assumption that every ejection of magnetic field energy and particles from the Sun (also known as Solar wind) has direct effects on the Earth’s weather. The impact of coronal holes and active regions on cold air advection (cold fronts, precipitation, and temperature decrease on the surface and higher layers) in the Belgrade region (Serbia) was analyzed. Some active regions and coronal holes appear to be in a geo-effective position nearly every 27 days, which is the duration of a solar rotation. A similar period of repetitiveness (27–29 days) of the passage of the cold front, and maximum and minimum temperatures measured at surface and at levels of 850 and 500 hPa were detected. We found that 10–12 days after Solar wind velocity starts significantly increasing, we could expect the passage of a cold front. After eight days, the maximum temperatures in the Belgrade region are measured, and it was found that their minimum values appear after 12–16 days. The maximum amount of precipitation occurs 14 days after Solar wind is observed. A recurring period of nearly 27 days of different phases of development for hurricanes Katrina, Rita and Wilma was found. This analysis confirmed that the intervals of time between two occurrences of some particular meteorological parameter correlate well with Solar wind and A index. 相似文献
14.
V.M. Velasco B. Mendoza 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
The nature of the climatic response to solar variability is assessed over a long-time scale. The wavelet analysis applied to paleoclimatic proxy data of large scale atmospheric phenomena (North Atlantic Oscillation, Atlantic Multidecadal Oscillation, Pacific Decadal Oscillation and Southern Oscillation Index) has revealed coherence between the climatic oscillations and the solar phenomena (the cosmogenic isotope 10Be and the Total Solar Irradiance) preferentially with periods of Schwabe, Hale and Yoshimura–Gleissberg cycles that may reflect a modulation of solar activity. 相似文献
15.
O. Ogunjobi V. Sivakumar W.T. Sivla 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The response of mesosphere and lower thermosphere (MLT) temperature to energetic particle precipitation over the Earth’s polar regions is not uniform due to complex phenomena within the MLT environment. Nevertheless, the modification of MLT temperatures may require an event-based study to be better observed. This work examines the influence of precipitation, triggered by solar wind stream interfaces (SI) event from 2002 to 2007, on polar MLT temperature. We first test the relationship between the ionospheric absorption measured by the SANAE IV (South African National Antarctic Expedition IV) riometer and the layer of energetic particle precipitation from POES (Polar Orbiting Environmental Satellites). The combined particle measurements from POES 15, 16, 17 and 18 were obtained close in time to the pass of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) temperature retrieval. Here, a superposed epoch technique is described and implemented to obtain average temperature profiles during SI-triggered particle precipitation. The superposed epoch average shows no significant temperature decrease below 100 km prior to the onset of SI-triggered precipitation, whereas a clear superposed average temperature decrease is observed at 95 km after the SI impact. A case study of SI event also yields similar observations. Results indicate that cooling effects due to the production of mesospheric odd hydrogen might be major contributors to temperature decrease under compressed solar wind stream. 相似文献
16.
S.A. Demin Y.A. Nefedyev A.O. Andreev N.Y. Demina S.F. Timashev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(2):639-644
The analysis of turbulent processes in sunspots and pores which are self-organizing long-lived magnetic structures is a complicated and not yet solved problem. The present work focuses on studying such magneto-hydrodynamic (MHD) formations on the basis of flicker-noise spectroscopy using a new method of multi-parametric analysis. The non-stationarity and cross-correlation effects taking place in solar activity dynamics are considered. The calculated maximum values of non-stationarity factor may become precursors of significant restructuring in solar magnetic activity. The introduced cross-correlation functions enable us to judge synchronization effects between the signals of various solar activity indicators registered simultaneously. 相似文献
17.
M. Hayosh Z. Nme
ek J. afrnkov G.N. Zastenker 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2005,36(12):2417-2422
The magnetosheath plays a dominant role in the Sun–Earth connection because the magnetosheath field and plasma actually interact with the magnetosphere. The interactions change the magnetospheric magnetic field from its nominal value through a long chain of different processes. The change is usually described by geomagnetic indices and thus it can be expected that these indices would reflect changes in the magnetosheath. The present paper analyzes the relation between geomagnetic activity characterized by changes of the Kp, DST and AE indices and ion flux measured in the night-side magnetosheath. The results suggest a weak dependence of the DST index on the ion flux in the inner magnetosheath that is connected with a magnetopause displacement. On the other hand, fluctuations of the ion flux in the analyzed frequency range do not correlate with any of the indices. 相似文献
18.
A.H. Maghrabi H.M. Al Dajani 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Water vapor is the most important greenhouse gas. It plays a major role in the dynamics of atmospheric circulation, radiation exchange within the atmosphere, and climate variability. Knowledge of the distribution of water vapor is important for understanding climate change and global warming. 相似文献
19.
S. Veretenenko M. Ogurtsov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Possible reasons for the temporal instability of long-term effects of solar activity (SA) and galactic cosmic ray (GCR) variations on the lower atmosphere circulation were studied. It was shown that the detected earlier ∼60-year oscillations of the amplitude and sign of SA/GCR effects on the troposphere pressure at high and middle latitudes (Veretenenko and Ogurtsov, Adv.Space Res., 2012) are closely related to the state of a cyclonic vortex forming in the polar stratosphere. The intensity of the vortex was found to reveal a roughly 60-year periodicity affecting the evolution of the large-scale atmospheric circulation and the character of SA/GCR effects. An intensification of both Arctic anticyclones and mid-latitudinal cyclones associated with an increase of GCR fluxes at minima of the 11-year solar cycles is observed in the epochs of a strong polar vortex. In the epochs of a weak polar vortex SA/GCR effects on the development of baric systems at middle and high latitudes were found to change the sign. The results obtained provide evidence that the mechanism of solar activity and cosmic ray influences on the lower atmosphere circulation involves changes in the evolution of the stratospheric polar vortex. 相似文献
20.
P.K. Sharma P.P. Pathak D.K. Sharma Jagdish Rai 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
To study the variation of ionospheric electron and ion temperatures with solar activity the data of electron and ion temperatures were recorded with the help of Retarding Potential Analyzer payload aboard Indian SROSS-C2 satellite at an average altitude of ∼500 km. The main focuses of the paper is to see the diurnal, seasonal and latitudinal variations of electron and ion temperatures during periods of minimum to maximum solar activity. The ionospheric temperatures in the topside show strong variations with altitude, latitude, season and solar activity. In present study, the temperature variations with latitude, season and solar activity have been studied at an average altitude ∼500 km. The peak at sunrise has been observed during all seasons, in both electron and ion temperatures. Further, the ionospheric temperatures vary with latitude in day time. The latitudinal variation is more pronounced for low solar activity than for high solar activity. 相似文献