首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The existence of a “dense” lunar ionosphere has been controversial for decades. Positive ions produced from the lunar surface and exosphere are inferred to have densities that are ?106107 m?3 near the surface and smaller at higher altitudes, yet electron densities derived from radio occultation measurements occasionally exceed these values by orders of magnitude. For example, about 4% of the single-spacecraft radio occultation measurements from Kaguya/SELENE were consistent with peak electron densities of ~3×108 m?3. Space plasmas should be neutral on macroscopic scales, so this represents a substantial discrepancy. Aditional observations of electron densities in the lunar ionosphere are critical to resolving this longstanding paradox. Here we theoretically assess whether radio occultation observations using two-way coherent S-band radio signals from the Lunar Reconnaissance Orbiter (LRO) spacecraft could provide useful measurements of electron densities in the lunar ionosphere. We predict the uncertainty in a single LRO radio occultation measurement of electron density to be ~3×108 m?3, comparable to occasional observations by Kaguya/SELENE of a dense lunar ionosphere. Thus an individual profile from LRO is unlikely to reliably detect the lunar ionosphere; however, averages of multiple (~10) LRO profiles acquired under similar geophysical and viewing conditions should be able to make reliable detections. An observing rate of six ingress occultations per day (~2000 per year) could be achieved with minimal impact on current LRO operations. This rate compares favorably with the 378 observations reported from the single-spacecraft experiment on Kaguya/SELENE between November 2007 and June 2009. The large number of observations possible for LRO would be sufficient to permit wide-ranging investigations of spatial and temporal variations in the poorly understood lunar ionosphere. These findings strengthen efforts to conduct such observations with LRO.  相似文献   

5.
The digital ionosonde located in Bhopal (23.2°N, 77.2°E), India has been used to investigate the responses of the Es layer in the equatorial ionization anomaly (EIA) crest to the total solar eclipse (TSE) of July 22, 2009. Results show the presence of intense Es layer during and after the eclipse period. The gravity waves induced by the solar eclipse propagated upward in the Es layer and produced the periodic disturbance. The results of the wavelet analysis display the presence of dominant oscillation of about 24–32, 16–20 and 8 min. The appearance of intense sporadic-E concomitantly with the signatures of gravity wave suggests that the wind shear introduced by the solar eclipse induced gravity wave might be the plausible mechanism behind the intensification of Es-layer ionization.  相似文献   

6.
An annular solar eclipse occurred over the Indian subcontinent during the afternoon hours of January 15, 2010. This event was unique in the sense that solar activity was minimum and the eclipse period coincides with the peak ionization time at the Indian equatorial and low latitudes. The number of GPS receivers situated along the path of solar eclipse were used to investigate the response of total electron content (TEC) under the influence of this solar eclipse. These GPS receivers are part of the Indian Satellite Based Augmentation System (SBAS) named as ‘GAGAN’ (GPS Aided Geo Augmented Navigation) program. The eight GPS stations located over the wide range of longitudes allows us to differentiate between the various factors induced due to solar eclipse over the equatorial and low latitude ionosphere. The effect of the eclipse was detected in diurnal variations of TEC at all the stations along the eclipse path. The solar eclipse has altered the ionospheric behavior along its path by inducing atmospheric gravity waves, localized counter-electrojet and attenuation of solar radiation intensity. These three factors primarily control the production, loss and transport of plasma over the equatorial and low latitudes. The localized counter-electrojet had inhibited the equatorial ionization anomaly (EIA) in the longitude belt of 72°E–85°E. Thus, there was a negative deviation of the order of 20–40% at the equatorial anomaly stations lying in this ‘inhibited EIA region’. The negative deviation of only 10–20% is observed for the stations lying outside the ‘inhibited EIA region’. The pre-eclipse effect in the form of early morning enhancement of TEC associated with atmospheric gravity waves was also observed during this solar eclipse. More clear and distinctive spatial and temporal variations of TEC were detected along the individual satellite passes. It is also observed that TEC starts responding to the eclipse after 30 min from start of eclipse and the delay of the maximum TEC deviation from normal trend with respect to the maximum phase of the eclipse was close to one hour in the solar eclipse path.  相似文献   

7.
8.
9.
The equatorial ionosphere and thermosphere constitute a coupled system, with its electro dynamical and plasma physical processes being responsible for a variety of ionospheric phenomena peculiar to the equatorial region. The most important of these phenomena are: the equatorial electrojet (EEJ) current system and its instabilities, the equatorial ionization anomaly (EIA), and the plasma instabilities/irregularities of the night ionosphere (associated with the plasma bubble events – ESF). They constitute the major topics of investigations having both scientific and practical objectives. The tidal wind interaction with the geomagnetic field is responsible for the atmospheric dynamo electric fields, that together with the wind system, drives the major phenomena, under quiet conditions. Drastic modifications of these phenomena can occur due to magnetospheric forcing under solar-, interplanetary- and magnetospheric disturbances. They can also undergo significant modifications due to forcing by atmospheric waves (such as planetary- and atmospheric gravity waves) propagating upward or from extra tropics. This article will focus on the ambient conditions of the ionosphere–thermosphere system and the electro dynamics and plasma instability processes that govern the plasma irregularity generation. Major emphasis is given to problems related to the structuring of the equatorial night ionosphere through plasma bubble/ESF irregularity processes. Specific topics to be covered will include: equatorial electric fields, thermospheric winds, sunset electrodynamic processes, plasma drifts, EEJ plasma instability/irregularity generation, nighttime/post sunset plasma bubble irregularity generation, and very briefly, disturbance electric fields and winds and their effect on the ionization anomaly, the TEC and ESF/plasma bubble irregularities.  相似文献   

10.
A better understanding of the ionosphere through accurate mathematical models is no doubt a crucial element. This study focuses on the challenging problem of building a model representing the complex structure of the midlatitude ionosphere. Previous studies have shown that a regional planar model is suitable in representing the total electron content (TEC) trend in the midlatitude ionosphere in both hemispheres. In this study, the planar trend model for 12 non-overlapping northern hemisphere regions in three groups of geographically near 4 regions is further investigated under different levels of solar activity; low, moderate and high. To that end, the coefficients of the model are estimated in the least squares sense using total electron content values from global ionospheric maps (GIMs) for the years 2009, 2012 and 2014. Subsequently, these coefficients are used to reconstruct estimated TEC maps which are then compared with actual GIM-TEC by investigating their difference in normalized L2 norm squared sense. The regional planar trend model provides a particularly successful representation in the years 2012 and 2014 for which the solar activity level is the dominant factor determining the TEC trend. Under low solar activity conditions of 2009, other factors such as ocean currents, temperature variations and meteorological phenomena are suspected to have a considerable effect in some regions depending on their geographic location and on seasonal trends in those regions. As an example, studies show that under the influence of the Pacific Decadal Oscillation (PDO) and Siberian High (SH), a significant cooling trend between 2004 and 2018 in autumn is observed in Eurasia, which, in conjunction with the low solar activity levels, may be related to the deviations from the actual GIM-TEC in 2009 in these regions. As solar radiation increases, however, such bottom-side forcings are masked in 2012 and 2014 and these deviations are no longer observed.  相似文献   

11.
12.
13.
The D-region ionospheric disturbances due to the tropical cyclone Fani over the Indian Ocean have been analysed using Very Low Frequency (VLF) radio communication signals from three transmitters (VTX, NWC and JJI) received at two low latitude stations (Kolkata-CUB and Cooch Behar-CHB). The cyclone Fani formed from a depression on 26th April, 2019 over the Bay of Bengal (Northeastern part of the Indian Ocean) and turned into an extremely severe cyclone with maximum 1-min sustained winds of 250 km/h on 2 May, 2019 which made landfall on 3 May, 2019. Out of six propagation paths, five propagation paths, except the JJI-CHB which was far away from the cyclone track, showed strong perturbations beyond 3σ level compared to unperturbed signals. Consistent good correlations of VLF signal perturbations with the wind speed and cyclone pressure have been seen for both the receiving stations. Computations of radio signal perturbations at CUB and CHB using the Long Wave Propagation Capability (LWPC) code revealed a Gaussian perturbation in the D-region ionosphere. Analysis of atmospheric temperature at different layers from the NASA’s TIMED satellite revealed a cooling effect near the tropopause and warming effects near the stratopause and upper mesosphere regions on 3 May, 2019. This study shows that the cyclone Fani perturbed the whole atmosphere, from troposphere to ionosphere and the VLF waves responded to the disturbances in the conductivity profiles of the lower ionosphere.  相似文献   

14.
15.
16.
The total electron content (TEC) measurements from a network of GPS receivers were analyzed to investigate the storm time spatial response of ionosphere over the Indian longitude sector. The GPS receivers from the GPS Aided Geo Augmented Navigation (GAGAN) network which are uniquely located around the ∼77°E longitude are used in the present study so as to get the complete latitudinal coverage from the magnetic equator to low mid-latitude region. We have selected the most intense storms but of moderate intensity (−100 nT < Dst < −50 nT) which occurred during the unusually extremely low solar activity conditions in 2007–2009. Though the storms are of moderate intensity, their effects on equatorial to low mid-latitude ionosphere are found to be very severe as TEC deviations are more than 100% during all the storms studied. Interesting results in terms of spatial distribution of positive/negative effects during the main/early recovery phase of storms are noticed. The maximum effect was observed at crest region during two storms whereas another two storms had maximum effect near the low mid-latitude region. The associated mechanisms like equatorial electrodynamics and neutral dynamics are segregated and explained using the TIMED/GUVI and EEJ data during these storms. The TEC maps are generated to investigate the storm time development/inhibition of equatorial ionization anomaly (EIA).  相似文献   

17.
Classic solar atmospheric models put the Chromosphere-Corona Transition Region (CCTR) at 2 Mm above the τ5000=1 level, whereas radiative MHD (rMHD) models place the CCTR in a wider range of heights. However, observational verification is scarce. In this work we review and discuss recent results from various instruments and spectral domains. In SDO and TRACE images spicules appear in emission in the 1600, 1700 and 304 Å bands and in absorption in the EUV bands; the latter is due to photo-ionization of H i and He i, which increases with wavelength. At the shortest available AIA wavelength and taking into account that the photospheric limb is 0.34 Mm above the τ5000=1 level, we found that CCTR emission starts at 3.7 Mm; extrapolating to λ=0, where there is no chromospheric absorption, we deduced a height of 3.0±0.5 Mm, which is above the value of 2.14 Mm of the Avrett and Loeser model. Another indicator of the extent of the chromosphere is the height of the network structures. Height differences produce a limbward shift of features with respect to the position of their counterparts in magnetograms. Using this approach, we measured heights of 0.14±0.04 Mm (at 1700 Å), 0.31±0.09 Mm (at 1600 Å) and 3.31±0.18 Mm (at 304 Å) for the center of the solar disk. A previously reported possible solar cycle variation is not confirmed. A third indicator is the position of the limb in the UV, where IRIS observations of the Mg ii triplet lines show that they extend up to 2.1 Mm above the 2832 Å limb, while AIA/SDO images give a limb height of 1.4±0.2 Mm (1600 Å) and 5.7±0.2 Mm (304 Å). Finally, ALMA mm-λ full-disk images provide useful diagnostics, though not very accurate, due to their relatively low resolution; values of 2.4±0.7 Mm at 1.26 mm and 4.2±2.5 Mm at 3 mm were obtained. Putting everything together, we conclude that the average chromosphere extends higher than homogeneous models predict, but within the range of rMHD models..  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号