共查询到20条相似文献,搜索用时 15 毫秒
1.
Paul Withers 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
Recent measurements by Mars Global Surveyor and Mars Express have greatly increased the number of observations of the martian dayside ionosphere available for study. Together with earlier measurements from the Viking era, these datasets have been used to investigate variations in well-known properties of the martian dayside ionosphere and to discover new ionospheric features. The dayside ionosphere includes the main peak, called the M2 layer, and a lower layer, called the M1 layer. In the topside, above the M2 layer, electron densities exponentially decrease with increasing altitude. 相似文献
2.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013,52(11):1949-1958
Plasma bubble is one of the important weather events of the ionosphere. In past research, many studies on its occurrence characteristics have been done based on various observations, such as ionosondes, topside sounders, radio scintillations and in situ measurements by satellites. In recent years, GPS has become an important tool for the studies in this aspect. In this research, a study is made on occurrence characteristics of plasma bubbles with the GPS observations collected by the Hong Kong local GPS network for about 12 years. 相似文献
3.
4.
A.P. Kireev A.M. Krymskii 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The pattern of the magnetic field/plasma convection can be, to some extent, recovered from the magnetic field measurements by employing either theoretical or numerical models. We use the MAG/ER day-time measurements of the magnetic field at the altitudes from 90 to 180 km during the elliptical orbits of MGS. Analysis of the altitude variation of the characteristics of the large-scale magnetic fields, which were measured some distance away from strong crustal magnetic anomalies, is summarized. The low density of the Martian atmosphere together with the crustal magnetization result in critical differences in plasma convection which are followed by remarkable differences of the magnetic field features within the ionosphere of Venus and Mars (even in its northern hemisphere where the crustal magnetization is, on the average, low) and distribution of currents. 相似文献
5.
利用分布在70°E~210°E和20°S~40°N之间的GPS台站的数据,分析了2006年4月5日夜间(中等强度磁暴期间)观测到的电离层等离子体泡的特性.结果表明,本次事件中,等离子体泡大约发生在当地日落后1~1.5 h;空间范围为经度90°E~160°E,纬度12°S~33°N.这是第一次利用地基设备观测到如此大经度范围内的等离子体泡.等离子体泡在南半球出现较早,并且存活时间较长.在其产生的过程中,在约1100 km高度上,映射到磁赤道向上的运动速度约为300m/s,并且等离子体泡在高度上有倾斜.东向电场的存在,对激发等离子体泡起到了一定的作用. 相似文献
6.
Chigomezyo M. Ngwira Lee-Anne McKinnell Pierre J. Cilliers Endawoke Yizengaw 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The effects of the 15 May 2005 severe geomagnetic storm on the South African ionosphere are studied using ground-based and satellite observations. Ionospheric disturbances have less frequently been investigated over mid-latitude regions. Recently, a number of studies investigated their evolution and generation over these regions. This paper reports on the first investigation of travelling ionospheric disturbances (TIDs) over mid-latitude South Africa. Using global positioning system (GPS)-derived total electron content (TEC) variations from the South African network of dual frequency GPS receivers, we were able to examine the effects of the disturbance on the TEC. During this storm, two TEC enhancements were observed at low- and mid-latitudes: the first enhancement was observed between 30–45°S geomagnetic latitudes associated with equatorward neutral winds and the passage of a TID, while the second TEC enhancement is associated with a second TID. In addition, the F-region critical frequency (foF2) values observed at two ionosonde stations show response features that differ from those of the TEC during the disturbance period. The dissimilarity between the TEC and the foF2 suggests that two competing drivers may have existed, i.e., the westward electric field and equatorward neutral wind effects. 相似文献
7.
Stanimir M. Stankov Koen Stegen Plamen Muhtarov Rene Warnant 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2011
The purpose of the LIEDR (local ionospheric electron density profile reconstruction) system is to acquire and process data from simultaneous ground-based total electron content (TEC) and digital ionosonde measurements, and subsequently to deduce the vertical electron density distribution above the ionosonde’s location. LIEDR is primarily designed to operate in real time for service applications and, for research applications and further development of the system, in a post-processing mode. The system is suitable for use at sites where collocated TEC and digital ionosonde measurements are available. Developments, implementations, and some preliminary results are presented and discussed in view of possible applications. 相似文献
8.
Thai Lan Hoang M.A. Abdu John MacDougall Inez S. Batista 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
We present the results of a comparative study of the equatorial spread F (ESF) and the F layer critical parameter, the base height of the F layer bottomside (h′F) over the two equatorial sites, Ho Chi Minh City – HCM (dip latitude: 2.9°N) in Vietnam and Sao Luis – SL (dip latitude: ∼2°S) in Brazil. The study utilizes simultaneous data collected by a CADI at HCM and a digisonde at SL during the year 2002 with the monthly mean solar 10.7 cm flux (F10.7) varying from ∼120 to ∼185. This study focuses on the quiet time seasonal behavior of the F layer parameters in the two widely separated longitude sectors, and addresses the question as to what can we learn from such comparative studies with respect to the ambient ionospheric and thermospheric parameters that are believed to control the ESF generation and hence its longitudinal occurrence pattern. The observed differences/similarities in the diurnal and seasonal patterns of the F Layer height vis-à-vis the ESF occurrences are evaluated in terms of the known longitudinal differences in the F layer heights, thermospheric meridional winds and the geomagnetic peculiarities of the two sites. 相似文献
9.
Libo Liu Weixing WanBaiqi Ning Man-Lian ZhangMaosheng He Xinan Yue 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
The electron density profiles in the bottomside F2-layer ionosphere are described by the thickness parameter B0 and the shape parameter B1 in the International Reference Ionosphere (IRI) model. We collected the ionospheric electron density (Ne) profiles from the FORMOSAT-3/COSMIC (F3/C) radio occultation measurements from DoY (day number of year) 194, 2006 to DoY 293, 2008 to investigate the daytime behaviors of IRI-B parameters (B0 and B1) in the equatorial regions. Our fittings confirm that the IRI bottomside profile function can well describe the averaged profiles in the bottomside ionosphere. Analysis of the equatorial electron density profile datasets provides unprecedented detail of the behaviors of B0 and B1 parameters in equatorial regions at low solar activity. The longitudinal averaged B1 has values comparable with IRI-2007 while it shows little seasonal variation. In contrast, the observed B0 presents semiannual variation with maxima in solstice months and minima in equinox months, which is not reproduced by IRI-2007. Moreover, there are complicated longitudinal variations of B0 with patterns varying with seasons. Peaks are distinct in the wave-like longitudinal structure of B0 in equinox months. An outstanding feature is that a stable peak appears around 100°E in four seasons. The significant longitudinal variation of B0 provides challenges for further improving the presentations of the bottomside ionosphere in IRI. 相似文献
10.
11.
T.L. Gulyaeva 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2019,63(5):1588-1595
The international reference ionosphere, IRI, and its extension to plasmasphere, IRI-Plas, models require reliable prediction of solar and ionospheric proxy indices of solar activity for nowcasting and forecasting of the ionosphere parameters. It is shown that IRI prediction errors could increase for the F2 layer critical frequency foF2 and the peak height hmF2 due to erroneous predictions of the ionospheric global IG index and the international sunspot number SSN1 index on which IRI and IRI-Plas models are built. Regression relation is introduced to produce daily SSN1 proxy index from new time series SSN2 index provided from June 2015, after recalibration of sunspots data. To avoid extra errors of the ionosphere model a new solar activity prediction (SAP) model for the ascending part of the solar cycle SC25 is proposed which expresses analytically the SSN1 proxy index and the 10.7-cm radio flux F10.7 index in terms of the phase of the solar cycle, Φ. SAP model is based on monthly indices observed during the descending part of SC24 complemented with forecast of time and amplitude for SC25 peak. The strength of SC25 is predicted to be less than that of SC24 as shown with their amplitudes for eight types of indices driving IRI-Plas model. 相似文献
12.
Xiang Wang Chen Zhou 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2018,61(9):2252-2258
Incoherent scatter radar (ISR) is the most powerful ground-based measurement facility to study the ionosphere. The plasma lines are not routinely detected by the incoherent scatter radar due to the low intensity, which falls below the measured spectral noise level of the incoherent scatter radar. The plasma lines are occasionally enhanced by suprathermal electrons through the Landau damping process and detectable to the incoherent scatter radar. In this study, by using the European Incoherent Scatter Association (EISCAT) UHF incoherent scatter radar, the experiment observation presents that the enhanced plasma lines were observed. These plasma lines were considered as manifest of the suprathermal electrons generated by the high-frequency heating wave during the ionospheric modification. The electron density profile is also obtained from the enhanced plasma lines. This study can be a promising technique for obtaining the accurate electron density during ionospheric modification experiment. 相似文献
13.
S. Sundaresan B. Nageswara Rao 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
This paper presents a mathematical model to simulate ionospheric plasma drifts at equatorial low latitude regions by coupling of E- and F-regions. The governing non-linear differential equations (of elliptic and parabolic nature) are solved numerically through finite-difference schemes and obtained neutral winds and electric fields. The temperature and electron density profiles are generated utilizing MSIS-86 atmospheric model. The continuity equation is employed to obtain night-time E-region density profile using measured ionograms at Trivandrum (India). The computed vertical and zonal plasma drifts are comparable with measured Jacamarca plasma drifts with little variations during noon and evening times. The plasma drifts at Trivandrum (8.5° N, 76.5° E, dip 0.5° N) are compared with those of Jicamarca (12° S, 76.9° W, dip 2° N). Neutral wind simulations of present model agree well with those of horizontal wind model (HWM-93). The post-sunset enhancement and its reversal are also discussed. 相似文献
14.
利用Swarm卫星2015年1月1日至2019年12月31日的50Hz高频磁场数据,根据阈值判断垂直于主磁场方向的扰动,对磁纬45°N-45°S之间的小尺度电离层行扰事件进行探测.为避免混淆而产生的干扰,可以根据阈值判断平行于主磁场方向是否发生扰动,从而排除典型的赤道等离子体泡事件.但对于较弱的赤道等离子体泡事件,扰动阈值判断无效.为避免弱赤道等离子体泡事件的污染,根据小尺度电离层行扰事件和赤道等离子体泡事件在不同参数空间中的密度分布差异,利用基于密度的聚类算法将赤道等离子体泡事件进一步甄别提取.结果表明,聚类算法能够有效地将赤道等离子体泡事件从小尺度电离层行扰事件中甄选出来,并使小尺度电离层行扰事件聚类与赤道等离子体泡事件聚类形成清晰的边界.由聚类算法导出的弱赤道等离子体泡事件主要分布在磁纬15°N-15°S,地理经度20°-60°W,月份10至3月之间,并且在20:00MLT-24:00MLT存在高发生率,同时依赖于太阳活动,这也验证了前人的相关研究结果. 相似文献
15.
《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2007,39(5):859-866
Computerized ionospheric tomography (CIT) is a method to estimate ionospheric electron density distribution by using the global positioning system (GPS) signals recorded by the GPS receivers. Ionospheric electron density is a function of latitude, longitude, height and time. A general approach in CIT is to represent the ionosphere as a linear combination of basis functions. In this study, the model of the ionosphere is obtained from the IRI in latitude and height only. The goal is to determine the best representing basis function from the set of Squeezed Legendre polynomials, truncated Legendre polynomials, Haar Wavelets and singular value decomposition (SVD). The reconstruction algorithms used in this study can be listed as total least squares (TLS), regularized least squares, algebraic reconstruction technique (ART) and a hybrid algorithm where the reconstruction from the TLS algorithm is used as the initial estimate for the ART. The error performance of the reconstruction algorithms are compared with respect to the electron density generated by the IRI-2001 model. In the investigated scenario, the measurements are obtained from the IRI-2001 as the line integral of the electron density profiles, imitating the total electron content estimated from GPS measurements. It has been observed that the minimum error between the reconstructed and model ionospheres depends on both the reconstruction algorithm and the basis functions where the best results have been obtained for the basis functions from the model itself through SVD. 相似文献
16.
Erman Şentürk Muhammad Arqim Adil Mohd Saqib 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(6):1937-1947
The effects of physical events on the ionosphere structure is an important field of study, especially for navigation and radio communication. The paper presents the spatio-temporal ionospheric TEC response to the recent annular solar eclipse on June 21, 2020, which spans across two continents, Africa and Asia, and 14 countries. This eclipse took place on the same day as the June Solstice. The Global Navigation Satellite System (GNSS) based TEC data of the Global Ionosphere Maps (GIMs), 9 International GNSS Service (IGS) stations and FORMOSAT-7/COSMIC-2 (F7/C2) were utilized to analyze TEC response during the eclipse. The phases of the TEC time series were determined by taking the difference of the observed TEC values on eclipse day from the previous 5-day median TEC values. The results showed clear depletions in the TEC time series on June 21. These decreases were between 1 and 9 TECU (15–60%) depending on the location of IGS stations. The depletions are relatively higher at the stations close to the path of annular eclipse than those farther away. Furthermore, a reduction of about ?10 TECU in the form of an equatorial plasma bubble (EPB) was observed in GIMs at ~20° away from the equator towards northpole, between 08:00–11:00 UT where its maximum phase is located in southeast Japan. Additionally, an overall depletion of ~10% was observed in F7/C2 derived TEC at an altitude of 240 km (hmF2) in all regions affected by the solar eclipse, whereas, significant TEC fluctuations between the altitudes of 100 km ? 140 km were analyzed using the Savitzky-Golay smoothing filter. To prove TEC depletions are not caused by space weather, the variation of the sunspot number (SSN), solar wind (VSW), disturbance storm-time (Dst), and Kp indices were investigated from 16th to 22nd June. The quiet space weather before and during the solar eclipse proved that the observed depletions in the TEC time series and profiles were caused by the annular solar eclipse. 相似文献
17.
Results of our investigation showed that occurrence frequency of Pi2 over a 24 hour period undergoes seasonal variations in time coincidence with foF2. In the winter months, at sunrise and sunset (when foF2gradients are the largest) the observation probability of these oscillations is minimal. At periods of summer solstice when the F2-layer persists almost round the clock, no effect of Pi2 pulsation attenuation is observed at sunrise and sunset. The pulsation amplitudes behave in a similar manner. Results of this study suggest the conclusion that the propagation of signal from the Pi2 sourse into the mid-latitudes, and also the parameters of these pulsations are essentially affected by electron density in the ionospheric F2-layer. 相似文献
18.
中纬电离层理论模式研究 总被引:3,自引:0,他引:3
本文利用谱方法建立起一维时变中纬度电离层理论模式.模式比较周密地考虑了中纬度地区电离层的主要动力学过程和光化学过程.模式的突出优点是计算耗时少.我们对日本Wakkanai站进行了模拟计算,模拟结果同实验结果符合得较好. 相似文献
19.
2000年4月6-7日的大磁暴(Dst最小值达到-317nT),急始(SSC)在6日1640UT左右出现,随后磁暴主相开始,约在7日0013UT进入恢复相.磁暴主相前期武汉地区F区电离层出现突然抬高现象,在2h内h′F和hmF2分别较暴前日增加约200km.此期间台湾中沥也几乎同时出现了F区电离层突增现象.磁暴主相前期f0F2较暴前日下降1.6MHz,其变化幅度在f0F2逐日变化起伏范围内,但7日f0F2最大值明显低于4-6日暴前水平,并伴随着波动特征.认为此次磁暴主相前期武汉地区F区电离层突增现象,可能和夜间磁暴常出现的扰动东向电场有关. 相似文献
20.
南极长城站电离层变化的数值模拟 总被引:1,自引:0,他引:1
南极长城站夏季电离层日变化具有Weddell海异常现象.本文利用一个一维时变理论模式,对长城站夏季电离层f0F2和hm日变化进行了数值模拟.我们讨论了中性风和顶部输运通量对f0F2和hm的影响,认为模拟计算得到的f0F2值比实测值要大的一个主要原因是国际参考电离层给出的上边界值偏大.文章最后介绍了一个获得实际的f0F2和hm的方法. 相似文献