首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
基于计算流体动力学(CFD)技术,采用涡耗散燃烧模型对环形混合器和锯齿冠状混合器的加力燃烧进行三维两相化学反应流的数值模拟.计算结果表明:相对于环形混合器,锯齿冠状混合器能够显著提高外涵气流的温度和内涵的含氧量,在相同的供油方案下,使得燃烧效率提高14.9%.   相似文献   

2.
基于CFD(computational fluid dynamics)技术,分别采用有限速率/涡耗散(finite-rate/eddy-dissipation)、涡耗散(eddy-dissipation)和涡耗散概念(EDC)燃烧模型,对一种曲面齿冠状混合器作用下的加力燃烧室进行数值计算.计算结果表明:曲面齿冠状混合器下游产生明显的流向涡对,流向涡的存在可以增强内外涵冷热气流掺混;与直面齿冠状混合器相比,曲面齿冠状混合器下游流向涡强度大于直面齿冠状混合器,其混合效率高于直面齿冠状混合器;加力燃烧室内氧气和二氧化碳质量分数分布结构表明了涡耗散模型的计算更为合理;计算结果可为加力燃烧室混合器选型和燃烧数值模拟提供依据.   相似文献   

3.
混合器中燃气/空气掺混特性研究   总被引:1,自引:0,他引:1  
合理的混合器结构对组合动力系统的高效燃烧和推进性能具有重要意义。为了获得最佳掺混效果,缩短燃烧室长度,利用CFD程序分别对环形、旋流器型和波瓣混合器中内、外涵燃气/空气的流动和掺混特性进行了全三维数值模拟。燃气为甲烷液氧富燃燃气。结果表明:无论采用何种混合器,随着掺混距离的增加,总温和组分均趋均匀;其中,波瓣混合器的掺混效果最好,内外双旋流型混合器的掺混效果次之,环形混合器的掺混效果较差;环形混合器内涵燃气喷射角度对燃气/空气掺混效果具有一定的影响,燃气与轴向成15°喷射时,掺混效果优于无角度喷射。  相似文献   

4.
发动机加力燃烧室湍流流场数值计算   总被引:3,自引:2,他引:3       下载免费PDF全文
采用非正交曲线坐标系下非交错网格的SIMPLE方法,对航空发动机加力燃烧室气相燃烧的湍流流场进行了数值计算,湍流模型采用k-ε双方程模型,平均化学反应速率采用涡旋破碎模型(EBU)计算,对EBU模型的缺陷作了讨论。差分网格采用分区方法生成,计算时对整个流场进行分区迭代直至得到收敛结果,数值计算结果合理。  相似文献   

5.
改进型一体化加力燃烧室方案的数值模拟   总被引:1,自引:2,他引:1  
针对传统加力燃烧室质量过大与非加力状态下流动损失巨大的问题展开了设计研究,提出了一种改进型一体化加力燃烧室方案,取消了常规的钝体稳定器,采用了内突扩中心锥的火焰稳定结构.采用了数值模拟的方法研究方案的性能.结果表明:该方案对入口参数不敏感;在所有研究的工况条件下,3种方案总压恢复系数均高于0.96,加力燃烧室的效率接近0.90;采用波瓣混合器的方案具有最佳的总体性能.   相似文献   

6.
三维加力燃烧室湍流流场的数值模拟   总被引:3,自引:1,他引:3       下载免费PDF全文
采用SIMPLE方法,对涡扇航空发动机加力燃烧室内无化学反应的湍流流场进行了数值模拟。该加力燃烧室带有波瓣型混合器,并有多个环形稳定器及径向稳定器。湍流模型采用kε双方程模型。湍流流场数值计算结果合理。  相似文献   

7.
程晓军  范育新  蔡迪  张斌  贾冰岳 《推进技术》2014,35(8):1094-1101
为了满足TBCC超级燃烧室的各工作模式下的低阻高效混合,设计了两种采用方形波瓣混合器和结构可调的导流片相结合的强化掺混方案。方案A由上下扩张角不等的波瓣混合器和处于波谷上方的离散状导流片组成,波瓣混合器正对于分流环;方案B由全环形导流片和上下等扩张角的波瓣混合器组成,波瓣混合器的中径小于分流环直径。通过数值研究对比分析了两种混合方案的流动特征发现,两种方案都未出现倒流和流动分离现象;除冲压模态时的波峰截面方案B的流线分布较为理想外,其它工作状态下方案A波峰和波谷截面流线分布均优越方案B。通过对总压恢复系数、热混合效率及动量混合系数的对比发现,混合方案A在飞行Ma03的各工作状态下的总压恢复系数均高于方案B最多高3.5%且能在较短的掺混距离内使内外涵气流的温度和速度混合均匀。考虑到兼顾飞行Ma03范围内的低阻高效混合要求,方案A具有良好的强化掺混特性。  相似文献   

8.
加力燃烧室模型试验研究   总被引:1,自引:0,他引:1  
模型试验评估了X型加力燃烧室的流动特性和燃烧特性。其结果是:流动损失与经验关系预估值相符;稳定器的缩尺以及其后的回流区(稳定器头部进气)结构对稳定特性有重大影响;燃烧效率相对预估值低4-7个百分点;加力过程中的压力变化较点火来得猛烈,相对冷却气量既随工况改变也随输油圈的工作情况改变;对全尺寸加力的设计有重要的参考意义。  相似文献   

9.
利用FLUENT软件对某型发动机加力燃烧室进行了三维两相化学反应流的数值计算;应用有限速率化学反应模型和离散相雾化模型描述了加力燃烧室中复杂的三维两相化学反应过程。计算中给出了冷热态的流场变量和化学组分分布,以及燃烧效率和总压恢复系数沿流程的变化关系,与试验结果符合较好。  相似文献   

10.
一体化加力燃烧室方案设计及数值研究   总被引:17,自引:0,他引:17  
针对未来高推重比航空发动机加力燃烧室的设计需求,提出了一种与涡轮后框架一体化的加力燃烧室方案.并用商业数值计算软件对其进行了三维冷态和热态流场数值模拟研究。结果表明,该方案利用涡轮整流支板及壁式稳定器,能够较好地组织加力燃烧室内的燃烧.出口截面温度分布均匀,综合性能良好。  相似文献   

11.
通过数值模拟对新型加力用外涵引气双层壁喷油杆冷却性能进行了研究.该喷油杆为双层壁结构, 从外涵引气冷却喷油杆.首先对实验油杆冷却性能进行了计算, 并与油杆冷却性能模拟实验结果进行了对比, 两者变化规律基本符合, 表明该计算方法可用.随后用该方法对真实加力室油杆冷却性能进行了计算, 得到该喷油杆在真实加力室4个工况下外套及油杆内壁温度分布及从外涵引气量.数值模拟结果表明该双层壁喷油杆方案可以有效引气和降温, 使得喷油杆在高温的加力燃烧室内能正常工作.   相似文献   

12.
将混合扩压器与火焰稳定器融为一体设计,并引入外涵冷流对高温结构件进行强化冷却,采用数值仿真方法,对比分析入口涵道比(0.278~0.583)和总温比(0.418~0.464)对一体化加力燃烧室中流动特征及其冷却性能的影响.结果 表明:在研究参数范围内,大部分外涵冷流冷却隔热屏或直接进入加力燃烧室参与混合,仅有少部分进入...  相似文献   

13.
利用FLUENT CFD(computational fluid dynamics)数值计算软件,对波瓣喷射器中无化学反应异类气体的混合过程进行了数值研究,二氧化碳气体作为主流从波瓣状狭缝中喷出,与同向空气流在混合管内进行混合.获得了两股气流相互混合过程中的速度分布、流向涡分布、组分分布等相关信息,分析了波瓣喷射器结构参数对流向涡环流强度的影响.波瓣喷射器诱导的流向涡强化了同向流动气体之间的混合效率,组分分布较为均匀.   相似文献   

14.
针对齿冠形收敛喷管的气动和红外辐射特性进行了数值计算,并与常规收敛喷管进行了对比.在本文研究范围内的结果表明:①齿冠形收敛喷管的推力损失大于常规收敛喷管;②齿冠形尾缘引射外界大气与主流掺混的能力强于常规收敛喷管,核心区长度得到有效衰减;③齿冠形喷管的热喷流3~5μm红外辐射强度在侧向相对常规收敛喷管的衰减量在15%左右,尾缘内倾角对于尾喷流红外辐射强度衰减的影响甚微;④齿冠内倾时,尾向处能遮挡喷管内部热部件.   相似文献   

15.
加力式双转子混合排气涡扇发动机全状态数学建模技术   总被引:1,自引:0,他引:1  
根据部件法建立了加力式双转子混合排气涡扇发动机全包线稳态数学模型.基于该模型,利用容积动力学原理,建立了起动数学模型.将该原理扩展到慢车状态以上,建立了包括起动、加减速、开关加力、停车等完整过程的全状态动态数学模型.以此为基础,给出了加力式双转子混合排气涡扇发动机在飞行包线内的高度特性.根据加力式双转子混合排气涡扇发动机原理,设计了简单的起动调节规律、加减速调节规律、加力调节规律及停车调节规律;计算了海平面标准大气条件下的从起动、加减速、开关加力、停车的完整动态过程.理论分析与仿真结果表明:该建模方法能够正确完成加力式双转子混合排气涡扇发动机的全包线的稳态计算和全状态动态计算,准确反映了该发动机在整个飞行包线内的全部工作过程.   相似文献   

16.
采用二阶迎风离散格式并选用RNG(renormalization group)k-ε湍流模型,对轴对称分开排气喷管和核心喷管上采用V形尾缘的分开排气喷管的喷流流场进行三维数值模拟.结果表明,相对基准轴对称分开排气喷管,V形尾缘一方面引入了流向涡,另一方面增加了核心喷流与风扇喷流之间的混合层长度,强化了喷流的混合,有效地...  相似文献   

17.
一种一体化加力燃烧室的数值模拟   总被引:1,自引:1,他引:1  
为适应新一代航空发动机高推质比的设计要求,设计出一种一体化加力燃烧室方案,利用截尾支板与带凹腔的分流环组合结构取代了传统火焰稳定器。对该方案进行了数值模拟研究及试验验证,结果表明:在该一体化加力燃烧室内涵中有3个低速回流区;截尾支板结构不仅起整流支板的作用,还能够起到火焰稳定器的作用;燃烧效率在90%~93%之间,流阻系数约为0.26;在所研究的工况下总压恢复系数均高于0.975,且主要的总压损失集中在截尾支板及分流环凹腔处。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号