首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orbital debris environment models are essential in predicting the characteristics of the entire debris environment, especially for altitude and size regimes where measurement data is sparse. Most models are also used to assess mission collision risk. The IDES (Integrated Debris Evolution Suite) simulation model has recently been upgraded by including a new sodium–potassium liquid coolant droplet source model and a new historical launch database. These and other features of IDES are described in detail. The accuracy of the IDES model is evaluated over a wide range of debris sizes by comparing model predictions to three major types of debris measurement data in low Earth orbit. For the large-size debris population, the model is compared with the spatial density distribution of the United States (US) Space Command Catalog. A radar simulation model is employed to predict the detection rates of mid-size debris in the field of view of the US Haystack radar. Finally, the small-size impact flux relative to a surface of the retrieved Long Duration Exposure Facility (LDEF) spacecraft is predicted. At sub-millimetre sizes, the model currently under-predicts the debris environment encountered at low altitudes by approximately an order of magnitude. This is because other small-size debris sources, such as paint flakes have not yet been characterised. Due to the model enhancements, IDES exhibits good accuracy when predicting the debris environment at decimetre and centimetre sizes. Therefore, the validated initial conditions and the high fidelity future traffic model enables IDES to make long-term debris environment projections with more confidence.  相似文献   

2.
空间碎片现状与清理   总被引:7,自引:3,他引:4  
分析了空间碎片的严峻现状和空间碎片的10个来源,指出轨道碰撞是产生碎片最多的因素;介绍了空间碎片的观测方法、原理和观测系统的概况,包括正在兴建的观测系统——“空间篱笆”。最后,根据不同轨道高度和空间碎片的数量与大小,提出空间碎片清理原则、要求和9种清理方法。  相似文献   

3.
After a large consultation with the scientific and industrial communities in Europe, the Aurora Space Exploration Programme was unanimously approved at the European Space Agency (ESA) Council at ministerial level in Edinburgh in 2001. This marked the start of the programme's preparation phase that was due to finish by the end of 2004. Aurora features technology development robotic and crewed rehearsal missions aimed at preparing a human mission to Mars by 2033. Due to the evolving context, both international and European, ESA has undertaken a review of the goals and approach of its exploration programme. While maintaining the main robotic missions that had been conceived during Aurora, the European Space Exploration Programme that is currently being proposed to the Aurora participating states and other ESA Member States has a reviewed approach and will feature a greater synergy with other ESA programmes. The paper will present the process that led to the revision of ESA's plans in the field of exploration and will give the current status of the programme.  相似文献   

4.
根据机构间空间碎片协调委员会(IADC)和欧空局(ESA)的空间碎片减缓要求,在建立航天发射、爆炸和碰撞模型,以及碎片演化机制的基础上,对常规发射(BAU)、禁止在轨爆炸(NO-EX)和全面减缓(MIT)三种空间碎片减缓策略条件下,对2000~2100年空间碎片环境进行了仿真计算。结果表明,禁止航天器在轨爆炸、对失效的卫星和火箭上面级实施离轨操作,以及在航天器的发射和运行中不产生或抛弃分离物等减缓措施是限制空间碎片数量增长的有效方法。  相似文献   

5.
对完成任务的运载火箭末级、失效卫星等空间非合作目标进行空间操作是复杂的,需要地面测控网与主动航天器的密切合作才能完成抵近及相应操作。以火箭末级残骸作为空间非合作目标,给出了远程自主接近的轨道设计方法。通过地面遥控上传的目标轨道参数,主动航天器进行自主异面机动、主动调相等多次点火,完成对非合作目标的远程接近,接近距离在50km之内,2016年6月底远征一号甲上面级的成功飞行验证了该方法和设计结果的有效性。  相似文献   

6.
空间碎片环境现状与主动移除技术   总被引:7,自引:6,他引:7  
概述了空间碎片环境现状和对航天活动的影响,讨论了空间碎片主动移除对保持空间碎片环境稳定的必要性。空间碎片研究重心先从防护转向减缓,再转到主动移除,最终是清洁空间。评述了空间碎片主动移除技术现状,指出天基激光主动移除空间碎片技术具有很好的工程应用潜力。  相似文献   

7.
A Space Debris Impact Risk Analysis Tool (SDIRAT) was developed and implemented to assess the orbital debris impact risk on a specified target in Earth orbit, in terms of flux, relative velocity, impact velocity, direction of the incoming particles, debris mass and diameter. Based on a deterministic approach, SDIRAT uses a realistic orbital debris population where each representative particle is identified by its rectangular coordinates (position and velocity) at a reference epoch. Using this information, some geometrical algorithms were developed and implemented to evaluate the contribution of each particle to the incoming flux. The position of the particle with respect to a specified target drives the selection criteria to reject, or select, it as a possible projectile. On the other hand, the relative velocity vector can be used to estimate the impact direction of the incoming flux. SDIRAT was conceived as a general tool for a variety of scenarios, such as low circular and elliptical orbits, up to the geosynchronous ring. This paper presents some examples of possible applications, including the computation of the incoming debris flux on SAX (low Earth orbit), SIRIO (geosynchronous orbit) and the IRIS upper stage (elliptical orbit). Other applications assess the impact risk for the Soviet Radar Ocean Reconnaissance Satellites Cosmos 1900 and Cosmos 1932.  相似文献   

8.
Smirnov  N.N.  Nazarenko  A.I.  Kiselev  A.B. 《Space Debris》2000,2(4):249-271
The paper discusses the mathematical modeling of long-term orbital debris evolution taking into account mutual collisions of space debris particles of different sizes. Investigations and long-term forecasts of orbital debris environment evolution in low Earth orbits are essential for future space mission hazard evaluation and for adopting rational space policies and mitigation measures. The paper introduces a new approach to space debris evolution mathematical modeling based on continuum mechanics incorporating partial differential equations. This is an alternative to the traditional approaches of celestial mechanics incorporating ordinary differential equations to model fragments evolution. The continuum approach to orbital debris evolution modeling has essential advantages for describing the evolution of a large number of particles, because it replaces the traditional tracking of space objects by modeling the evolution of their density of distribution.  相似文献   

9.
针对国内外空间活动产生的碎片,文章采用多脉冲推力作用下的轨道机动仿真方法,在主要考虑总速度增量为2 km/s的约束条件下,计算碎片清除所需要的速度增量、任务时间以及清除个数。仿真结果表明,单次任务可以清除12块分布比较集中的碎片。研究结果可为我国今后空间碎片清扫任务的设计提供参考依据。  相似文献   

10.
随着空间碎片数量的增加,其对近地轨道中的在轨卫星产生越来越严重的威胁,空间多碎片的高效清理在近年来也成为了学界关注的热点问题。针对柔性绳网在一次任务中同时对多个碎片进行捕获清理的问题,建立了柔性绳网的动力学模型和与碎片接触动力学模型,并对捕获过程中柔性绳网与碎片的运动进行了仿真模拟。针对绳网的最大拉伸力、质量块位移速度等变量,深入分析捕获过程中绳网与碎片的运动特性。数值仿真结果表明,在一次任务中,柔性绳网可以对多个旋转空间碎片进行捕获,并实现稳定的包裹缠绕,展示了柔性绳网良好的捕获能力。  相似文献   

11.
Culp  Robert D.  Jorgensen  Kira  Gravseth  Ian J.  Lambert  John V. 《Space Debris》1999,1(2):113-125
Knowledge of the observable properties of orbital debris is necessary to validate debris models for both the low Earth orbit (LEO) and the geosynchronous Earth orbit (GEO). Current methods determine the size and mass of orbital debris based on knowledge or assumption of the material type of the piece. Improvement in the knowledge of material is the goal of the research described herein. The process of using spectral absorption features to determine the material type is explored. A review of the optical measurements of orbital debris as well as current research in the area is discussed. Reflectances of common spacecraft materials are compared. The need for, and advances made possible by obtaining real data are explored. The prospects of the venture are investigated.  相似文献   

12.
Space debris mitigation is one objective of the French Space Operations Act (FSOA), in line with Inter-Agency Space Debris Coordination Committee (IADC) recommendations, through the removal of non-operational objects from populated regions. At the end of their mission, space objects are to be placed on orbits that will minimize future hazards to space objects orbiting in the same region. The FSOA, which came into force in 2010, ensures that technical risks associated with space activities are properly mitigated. The Act confers CNES a central support role in providing technical expertise to government on regulations dealing with space operations. In order to address the compliance of disposal orbits with the law technical requirements, CNES draws up Good Practices as well as a dedicated tool, Semi-analytic Tool for End of Life Analysis (STELA).  相似文献   

13.
The Venus Express mission is the European Space Agency's (ESA) first spacecraft at Venus. It was launched in November 2005 by a Soyuz–Fregat launcher and arrived at Venus in April 2006. The mission covers a broad range of scientific goals including physics, chemistry, dynamics and structure of the atmosphere as well as atmospheric interaction with the surface and several aspects of the surface itself. Furthermore, it investigates the plasma environment and interaction of the solar wind with the atmosphere and escape processes.One month after the arrival at Venus the Venus Express spacecraft started routine science operations. Since then Venus Express has been observing Venus every day for more than one year continuously making new discoveries.In order to ensure that all the science objectives are fulfilled the Venus Express Science Operations Centre (VSOC) has the task of coordinating and implementing the science operations for the mission. During the first year of Venus observations the VSOC and the experiment teams gained a lot of experience in how to make best use of the observation conditions and payload capabilities. While operating the spacecraft in orbit we also acquired more knowledge on the technical constraints and more insight in the science observations and their results.As the nominal mission is coming to an end, the extended mission will start from October 2007. The Extended Science Mission Plan was developed taking into account the lessons learned. At the same time new observations were added along with specific fine-tuned observations in order to complete the science objectives of the mission.This paper will describe how the previous observations influence the current requirements for the observations around Venus today and how they influence the observations in the mission extension. Also it will give an overview of the Extended Science Mission Plan and its challenges for the future observations.  相似文献   

14.
This report summarises the presentations which took place at the ‘Space Traffic Control – Is the Space Debris Problem Solvable?’ conference hosted by the Royal Aeronautical Society on the 2nd July 2013. The conference sought to promote discussion over methods to deal with the issue of space debris in particular and speakers included representatives from the European Space Agency, the United Kingdom Space Agency, practitioners and academia. Themes which emerged during the conference included the urgency of the problem of space debris, the need for short-term and long-term solutions, the necessity for the development and implementation of space debris remediation technologies to complement existing mitigation efforts and, last but not least, the wider applications of space traffic control. Regarding the sub-title of the conference, ‘is the space debris problem solvable?’, it would appear from the presentations that while there is the potential for future management of the issue through debris remediation and harmonised mitigation efforts, no comprehensive solutions exist at the time of writing.  相似文献   

15.
文章介绍了欧空局MASTER、美国NASA90和NASA96三种空间碎片模型的概念设计,并通过不同目标的轨道特征,对其定量预示进行比较。特别指出了:在直径大于1cm或者是在1mm以下的范围,不同模型之间存在一个量级以上的相当大的差异。  相似文献   

16.
It has become increasingly clear in recent years that the issue of space debris, particularly in low-Earth orbit, can no longer be ignored or simply mitigated. Orbital debris currently threatens safe space flight for both satellites and humans aboard the International Space Station. Additionally, orbital debris might impact Earth upon re-entry, endangering human lives and damaging the environment with toxic materials. In summary, orbital debris seriously jeopardizes the future not only of human presence in space, but also of human safety on Earth. While international efforts to mitigate the current situation and limit the creation of new debris are useful, recent studies predicting debris evolution have indicated that these will not be enough to ensure humanity?s access to and use of the near-Earth environment in the long-term. Rather, active debris removal (ADR) must be pursued if we are to continue benefiting from and conducting space activities. While the concept of ADR is not new, it has not yet been implemented. This is not just because of the technical feasibility of such a scheme, but also because of the host of economic, legal/regulatory, and political issues associated with debris remediation. The costs of ADR are not insignificant and, in today?s restrictive fiscal climate, are unlikely/to be covered by any single actor. Similarly, ADR concepts bring up many unresolved questions about liability, the protection of proprietary information, safety, and standards. In addition, because of the dual use nature of ADR technologies, any venture will necessarily require political considerations. Despite the many unanswered questions surrounding ADR, it is an endeavor worth pursuing if we are to continue relying on space activities for a variety of critical daily needs and services. Moreover, we cannot ignore the environmental implications that an unsustainable use of space will imply for life on Earth in the long run. This paper aims to explore some of these challenges and propose an economically, politically, and legally viable ADR option. Much like waste management on Earth, cleaning up space junk will likely lie somewhere between a public good and a private sector service. An international, cooperative, public-private partnership concept can address many of these issues and be economically sustainable, while also driving the creation of a proper set of regulations, standards and best practices.  相似文献   

17.
欧空局目前正在研究今后十年的空间探测任务,这些任务可以分为两大类,一类是具有研究性的地球探测任务,另一类是可供使用的地球观察任务。这些研究要求的卫星质量不同,小的不足1000kg,大的可达3000kg;功率不同,小的不到500W,大的超过1500W;轨道高度也不同,从500km到800km。除降雨量观测任务由于飞行器结构和系统的限制是在低倾角轨道上执行外,其他大部分任务将在太阳同步轨道上执行。  相似文献   

18.
This paper presents an overview of the analysis performed on the lunar orbit and some of the possible contingencies for the European Student Moon Orbiter (ESMO). Originally scheduled for launch in 2014 –2015 as a piggyback payload, it was the only ESA planned mission to the Moon. By way of a weak stability boundary transfer, ESMO is inserted into an orbit around the Moon. Propellant use is at a premium, so the operational orbit is selected to be highly eccentric. In addition, an optimization is presented to achieve an orbit that is stable for 6 months without requiring orbit maintenance. A parameter study is undertaken to study the sensitivity of the lunar orbit insertion. A database of transfer solutions across 2014 and 2015 is used to study the relation between the robustness of weak capture and the planetary geometry at lunar arrival. A number of example recovery scenarios, where the orbit insertion maneuver partially or completely fails, are also considered.  相似文献   

19.
美国高轨抵近操作卫星MiTEx飞行任务及启示   总被引:1,自引:0,他引:1  
简述了美国"微卫星技术试验"(Micro-satellite Technology Experiment,MiTEx)计划进展情况,根据目前可获得的最新的MiTEx卫星轨道数据,对其整个飞行过程进行了深入研究,划分了MiTEx-A卫星与MiTEx-B卫星飞行阶段,描述了各阶段飞行轨迹,给出了飞行任务关键数据,对其飞行任务进行了总结。在飞行任务分析的基础上,结合国外对MiTEx卫星的相关报道,分析了MiTEx卫星可能具备的抵近操作任务执行能力,提出了对高轨非合作目标抵近操作应用的启示,总结分析了执行高轨抵近操作任务所需的关键技术。  相似文献   

20.
Long-term debris environment projections are of great importance for assessing the necessity and effectiveness of debris mitigation measures. Two types of models have been developed to predict these environments. Environment evolution models like the EVOLVE code are using detailed mission model data to input spacecraft, upper stages, and operational debris into specific orbits at specific times; debris from fragmentations are placed in orbits defined by the state vector of the fragmenting object(s) and the breakup model. The second type, typified by the CHAIN program, uses a particle-in-box model that bins the environment in size and altitude rather than following the orbit evolution of individual debris fragments. A 3-Step approach using both the EVOLVE and CHAIN model in a synergistic way was used to increase the reliability of long term environment projections. EVOLVE historical projections 1957–1995 could be validated by comparison to measurements. The comparison of 100 year projection runs of EVOLVE and CHAIN for different traffic scenarios showed a good agreement. In this paper, for the first time, CHAIN projections up to 10,000 years, based on validated boundary conditions derived by EVOLVE are presented, indicating clearly the need of early implementation of effective mitigation measures to prevent exponential population growth by collisional cascading effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号