首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
喷管分离流动及其侧向载荷   总被引:4,自引:0,他引:4  
利用商业软件CFX对某液体火箭大面积比喷管地面条件下的分离流动进行了三维数值模拟.计算获得了喷管入口总压从8MPa减小到1MPa时的流场参数分布和侧向力载荷情况.结果表明,随着入口总压的降低,喷管内流场会依次经历自由激波分离和受限激波分离两种分离激波模态.受限激波分离模态下喷管壁面压强具有较大波动,再附着点压强甚至高于环境压强.流动分离情况下,喷管将受到一定侧向载荷作用,载荷方向随机分布.入口总压为4MPa时计算得到的侧向载荷最大,实际侧向载荷峰值可能出现在自由激波分离与受限激波分离转换瞬间.  相似文献   

2.
通过在Navier-Stokes方程组中添加体积力源项的方法,模拟了二维不可压流中等离子体激励器对周围流场的诱导作用.计算结果表明等离子体激励器在其下游会产生一股贴近物面的壁面射流,该射流各截面的速度型、最大速度衰减、射流宽度增长等均与典型的层流射流(壁面射流或二维狭缝射流)一致,表明等离子体激励对周围中性流体的诱导是一种势流影响.最后通过积分得到了等离子体诱导壁面射流的吹气系数,通过与传统吹气流动控制技术比较,指出目前等离子体激励产生的壁面射流吹气系数较小,仅适用于低速条件下的流动控制.  相似文献   

3.
扩张型双喉道喷管的流动特性和起动方法   总被引:4,自引:0,他引:4  
利用数值模拟方法,对二元扩张型双喉道喷管的流动特性和起动方法进行了研究.结果表明:扩张型双喉道喷管内会出现正激波系,产生了很大的总压损失,使第2喉道壅塞,喷管不能起动.在低落压比条件下,喉道注气可以形成大的分离区,使激波强度减弱、喷管可以起动;在大落压比条件下,喉道注气不能形成大的分离区,喷管不能起动.扩张段注气可以在喷管内形成大的分离区,使正激波转变成斜激波系,减小了总压损失,使第2喉道流通能力增强、喷管起动.   相似文献   

4.
为探索利用射流技术降低进气道起动马赫数的可行性,对二元高超声速进气道二维流场进行了数值模拟,通过对比不同工况的流场结构、流量系数及总压恢复系数,分析了射流对高超声速进气道的作用效果,并研究了射流速度、压强及倾角对进气道起动性能的影响。分析结果表明:施加射流,激波与进气道边界层原有干扰形式发生改变,是降低进气道起动马赫数的主要原因。研究还表明,增大射流速度利于提高控制效果,但持续增大射流速度,会造成隔离段反压升高,并且这一现象与射流压强相关,降低射流压强能使进气道起动的射流速度区间扩大,同时在不同射流倾角下,上述规律表现一致。该研究揭示了进气道起动能力随射流参数变化的系统性规律,可用于指导工程设计及优化。  相似文献   

5.
采用数值和试验方法研究了射流角度对平板横向射流流动结构和工作特性的影响,将得出的规律应用于射流控制矢量喷管上.在小型风洞试验台上进行试验,用纹影方法来观察实验模型的流场结构,通过静压测点来测量实验模型的壁面压力.研究结果表明:数值与试验结果吻合较好;对平板横向射流,增大射流角度能增大射流上游的分离区,弓形激波位置更靠前,角度增加到一定大小,流场结构变化不再明显;对射流控制矢量喷管进行数值模拟得出,增大射流角度能有效提高喷管的推力矢量性能,在NPR为 4.6,SPR为0.7条件下,射流角度从90°增加到130°,推力矢量性能提高28.3%.  相似文献   

6.
  总被引:1,自引:0,他引:1  
为研究高超声速进气道的性能参数随飞行高度、来流湍流度及来流马赫数的变化规律,并考察其压缩面上的边界层转捩现象对进气道性能的影响,采用本课题组程序平台HGFS所发展的γ-Reθ转捩模型进行了一系列的数值模拟工作,并对相应的流动现象和机理进行分析。首先,利用进气道压缩面的简化模型对γ-Reθ转捩模型经验关联公式的高超声速改进方法进行了验证;其次,以某型等熵压缩面的高超声速进气道为对象,研究了飞行高度、来流马赫数对边界层转捩位置等多个参数的影响。结果表明:随着飞行高度的增加,压缩面上边界层转捩位置延后,进气道总压恢复系数下降;与地表情况相比,在设计飞行高度转捩位置延后了约0.525 m,边界层厚度增加了约73%,总压恢复系数下降了约3.2%;来流湍流度变化0.5%量级可导致转捩位置移动0.2 m左右,但来流湍流度对总压恢复系数的影响则很小。  相似文献   

7.
超音速喷流DPIV瞬时速度场实验测量   总被引:11,自引:1,他引:11  
介绍了采用数字式互相关粒子图像测速系统(DPIV)在测量超音速喷流实验中的应用;实验给出了设计马赫数Ma=1.5的小型拉瓦尔喷管在不同总压和反压比条件下,喷流速度场、流线、涡量分布等定量信息.实验结果显示出流场中激波前后流体速度,涡量分布的明显变化,波系的结构和不同于一维管流的流动特性.  相似文献   

8.
联合射流控制技术的增升效果和机理   总被引:4,自引:0,他引:4  
数值模拟联合射流翼型的绕流,研究联合射流控制技术的增升效果和机理.主控方程选为定常可压缩流动的质量加权平均N-S方程和S-A湍流模型,使用Fluent软件进行数值求解.计算结果表明,联合射流控制技术可以有效地减小翼型的零升迎角、提高翼型的最大升力系数和失速迎角.通过理论分析,揭示了联合射流控制技术的增升机理,即通过增加翼型上表面的流速从而增大绕翼型的环量,通过向边界层内注入能量从而延迟翼型大迎角下的流动分离.  相似文献   

9.
高超声速边界层转捩对摩阻、传热等有重要影响,飞行器的研制迫切希望能精确预测和控制边界层转捩。在JF8A激波风洞中开展了7°半锥角的高超声速尖锥边界层转捩实验研究,利用响应频率达到1 MHz量级的高频压力传感器对尖锥壁面脉动压力进行了测量,并结合热流测量结果,研究了高超声速尖锥边界层中扰动波的发展过程。实验结果表明:JF8A激波风洞在雷诺数为6.4×106/m状态下核心流的自由流噪声为2.8%;高频脉动压力测量技术能清晰地捕捉转捩过程中的第二模态波及其发展历程,试验状态下模型的第二模态波频率范围为165~206 kHz。当前研究结果能够为高超声速数值方法验证提供数据支撑。   相似文献   

10.
合成射流控制NACA0015翼型大攻角流动分离   总被引:6,自引:0,他引:6  
为了研究合成射流激励器处于NACA0015翼型回流区时对其分离流动的控制,采用商用计算流体力学软件Fluent 6.1求解Reynolds平均Navier-Stokes方程,通过对翼型气动力特性、脱落漩涡结构以及射流孔口附近流动结构的分析,揭示了合成射流处于分离区时对边界层控制的机理.结果表明:当合成射流孔口处于回流区时仍可有效推迟翼面边界层分离点,缩小回流区范围,从而有效提高翼型的升力.当射流方向垂直于壁面,无量纲频率以及吹气速度比都等于1时,翼型平均升力系数提高40%左右.   相似文献   

11.
采用GAO-YONG可压缩湍流方程组,模拟了平板激波/湍流边界层干扰现象.运用SIMPLE算法求解方程组,并分别采用三阶精度的QUICK格式和中心格式离散对流项和扩散项.计算结果较好预测了入射斜激波在平直壁面引起湍流附面层分离的流动特征: 分离点的反射激波、分离包引起的膨胀扇以及再附点的反射激波.对流场的时均参数与实验值进行了比较,计算得到的壁面压力分布、摩阻系数分布和速度型与实验值比较吻合很好.结果表明GAO-YONG可压缩湍流方程组能够高精度模拟平板激波/湍流边界层干扰流动.   相似文献   

12.
在马赫数3.8的超声速风洞中,以高时空分辨率的基于纳米示踪的平面激光散射(NPLS,Nano-tracer based Planar Laser Scattering)技术为实验手段,研究了有无喷流的超声速光学头罩流场的精细结构,清晰地再现了流场中的激波、膨胀波、剪切层和湍流边界层等复杂结构.通过分析时间相关的流场NPLS图像,可以发现流场结构随时间的演化特性.结果表明:无喷流情况下光学窗口上方的大部分流场处于层流状态;有喷流情况下剪切层的层流区域较短,在很短的距离内转捩至湍流状态;喷流出口压力高于外界压力情况下剪切层的转捩位置比压力匹配情况下较为靠前,光学窗口上方的涡结构也较为复杂.比较而言,后者对气动光学性能的影响更大.  相似文献   

13.
气动弹爆破过程性能仿真分析   总被引:1,自引:1,他引:0  
针对工业界对于安全有效的管道清洁装置的需求,设计了一种利用气动爆破的原理进行管道除垢的设备.该装置采用气动控制,利用压缩空气的瞬时释放产生的射流与冲击波的能量击碎管道内壁的附着物,实现管道除垢.通过分析装置工作的原理及运行过程,给出了重要参数的建模过程.通过仿真分析了气爆过程中压强、剪切力的分布特点以及传播过程,计算了其管道内气流速度场的分布变化,得出了气动弹爆破过程中对壁面产生的冲击主要来源于射流以及冲击波,并且在使用10MPa的工作压强下一次爆破可清理的管道范围超过160m.该设计可以高效的实现管道清污的作用.   相似文献   

14.
微射流强化混合对喷流红外辐射特性的影响   总被引:1,自引:0,他引:1  
计算了微射流强化混合喷流在3~5μm波段的红外辐射特性,并与无微射流强化混合的喷流红外辐射特性进行了比较,分析了微射流强化混合对喷流红外辐射特性的影响.喷流的流场及温度场结果采用有限体积法求解N-S方程得到,采用Tam-Thies湍流模型模拟喷流.红外辐射特性的计算采用有限体积法求解吸收-发射性介质条件下的三维辐射传输方程得到.计算结果表明,在中等亚音速条件下,微射流可以达到较好的强化混合效果,射流流量占主流流量1%时,喷流的红外辐射强度比基准喷流的红外辐射强度降低15%左右,射流流量达到主流流量的3%时,喷流的红外辐射强度可以降低27%左右.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号