首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The topic of relativistic electron dynamics in the outer radiation belt has received considerable attention for many years. Nevertheless, the problem of understanding the physical phenomenon involved is far from being resolved. In this paper, we use DEMETER observations to examine the variations of the energetic electron fluxes and ELF/VLF wave intensities in the inner magnetosphere during the intense 8 November 2004 magnetic storm. Electron flux spectra and associated wave intensity spectra are analysed throughout the magnetic storm and common characteristics or differences to other storm events are retained. The overall objective of this study is to identify and derive parameters that are relevant for particle flux modelling; the time constant characterizing the persistent decay after particle enhancement was found to be one of these important model parameters.The analysis of the 8 November 2004 event reveals that for L-shell parameter higher than 4, an electron flux dropout is observed during the storm’s main phase for electrons in the energy range 0.1–1 MeV, as has been reported from other measurements. Characteristic wave spectra accompanying this phase are analysed. They show a typical enhancement in the frequency range 0.3–10 kHz at onset for all L-shell values under consideration (2 < L < 5). During the first stage of the recovery phase, the electron fluxes are increased to a level higher than the pre-storm level, whereas the level of wave intensity in the frequency range observed below 300 Hz is at its highest. In the second stage, the particle flux decrease goes hand in hand with a global wave activity decline, the relaxation time of the latter being smaller than the former’s one. In some other cases, long-lasting electron enhancement associated with constant wave activity has been observed during this latter stage. For the above mentioned storm, while at low L values the decay time constants are higher for low energy electrons than for high energy electrons, this order is reversed at high L values. At about L = 3.6 the time constant is independent of electron energy.  相似文献   

2.
We continue to analyze the distribution of electron fluxes with energy 30–500 keV under the radiation belts at low and middle latitudes (L = 1.2–1.9) using experimental data obtained onboard ACTIVE satellite. Special attention is given to altitudinal distribution of electron fluxes and detailed analysis of these electron formations. We observe three main regions of electron flux registration that seem to exist constantly under the radiation belts. These regions are: magneto-conjugated to SAA region (in the north hemisphere), local zone of low intense electron flux accumulation to the west of SAA, and extensive region in the north hemisphere to the east. The analysis of experimental data obtained from ACTIVE satellite (orbit height 500–2500 km) shows that electron fluxes are registered in the wide altitude range up to 1100 km. It is shown that these formations have complicated initial structure with two regions of flux maximums: at L = 1.3 and L = 1.6–1.8. We compare particle data with low frequency (LF) data (ARIEL-4 satellite) and high frequency (HF) data (CORONAS-I satellite). Also we discuss the possible mechanisms of the appearance of these formations under the radiation belts.  相似文献   

3.
The Juno spacecraft made the first in-situ observations of energetic particles in the polar region of Jupiter’s magnetosphere. After Jupiter Orbit Insertion (JOI) in July 2016, data from ~20 Juno perijoves (PJs) obtained by Juno/JEDI are accumulated, providing an excellent opportunity to study the long term spatio-temporal distribution of energetic particles in Jupiter’s radiation belt. We transform Juno’s position from a Cartesian to a magnetic coordinate system by tracing magnetic field lines based on a fourth order Runge-Kutta method. Then the fluxes of energetic electrons from PJ1 to PJ14 sorted by different locations in magnetic coordinate space and the data are well organized by the L-shell parameter. The variation of electron flux increases with L-shell. The deviation (the ratio of the 75th percentile to the 25th percentile) of 0.51 MeV electron flux varies from a factor of 1.23 near L = 9.5 to 27.57 near L = 15.5. However, the mean flux decreases by about one order of magnitude in the same region. The electron spectra at larger L-shells are softer than that at smaller L-shells. On the other hand, the electron flux decreases more rapidly with increased L-shell when the location is off the equator. Along an L-shell, the electron flux decrease at first and then increase again from equator to mid-latitude region. In addition, we compare the statistical results with the widely used GIRE2 model. JEDI data correspond well with the GIRE2 model when the L-shell is > 14.75. GIRE2 underestimate the electron flux for L-shell smaller than 13.25. These results of this analysis are applicable to estimate the effects of the radiation environment in Jupiter’s magnetosphere.  相似文献   

4.
Propagation of UHE protons through CMB radiation leaves the imprint on energy spectrum in the form of Greisen–Zatsepin–Kuzmin (GZK) cutoff, bump (pile-up protons) and dip. The dip is a feature in energy range 1 × 1018–4 × 1019 eV, caused by electron–positron pair production on CMB photons. Calculated for power-law generation spectrum with index γg = 2.7, the shape of the dip is confirmed with high accuracy by data of Akeno-AGASA, HiRes, Yakutsk and Fly’s Eye detectors. The predicted shape of the dip is robust: it is valid for the rectilinear and diffusive propagation, for different discreteness in the source distribution, for local source overdensity, deficit, etc. This property of the dip allows us to use it for energy calibration of the detectors. The energy shift λ for each detector is determined by minimum χ2 in comparison of observed and calculated dip. After this energy calibration the absolute fluxes, measured by AGASA, HiRes and Yakutsk detectors remarkably coincide in energy region 1 × 1018–1 × 1020 eV. Below the characteristic energy Ec ≈ 1 × 1018 eV the spectrum of the dip flattens for both diffusive and rectilinear propagation, and more steep galactic spectrum becomes dominant at E < Ec. The energy of transition Etr < Ec approximately coincides with the position of the second knee E2kn, observed in the cosmic ray spectrum. The dip-induced transition from galactic to extragalactic cosmic rays at the second knee is compared with traditional model of transition at ankle, the feature observed at energy 1 × 1019 eV.  相似文献   

5.
BepiColombo is scheduled for launch in August 2013 and to arrive after a nearly six-year long transfer at Mercury in June 2019. The trajectory has a number of challenging elements: a launch with Soyuz/Fregat into a geostationary transfer orbit, followed by a lunar flyby, long low-thrust arcs and five more planetary flybys (one at the Earth, two at Venus and two at Mercury). At arrival the low thrust arcs reduce the approach velocity so much that BepiColombo passes by the Sun–Mercury Lagrange points L1 and L2 and gets weakly captured in a highly eccentric orbit around Mercury in case the orbit insertion manoeuvre would fail.This paper describes the navigation strategy during the final phase. Five trajectory correction manouevres during the last 65 days requiring up to 20 m/s (3σ) are proposed. With this strategy it is possible to navigate BepiColombo safely through the weak-stability boundary of Mercury and to reach the target periherm with a precision of 11 km.  相似文献   

6.
Predicting the occurrence of large geomagnetic storms more than an hour in advance is an important, yet difficult task. Energetic ion data show enhancements in flux that herald the approach of interplanetary shocks, usually for many hours before the shock arrival. We present a technique for predicting large geomagnetic storms (Kp  7) following the arrival of interplanetary shocks at 1 AU, using low-energy energetic ions (47–65 keV) and solar wind data measured at the L1 libration point. It is based on a study of the relationship between energetic ion enhancements (EIEs) and large geomagnetic storms by Smith et al. [Smith, Z., Murtagh, W., Smithtro, C. Relationship between solar wind low-energy energetic ion enhancements and large geomagnetic storms. J. Geophys. Res. 109, A01110, 2004. doi:10.1029/ 2003JA010044] using data in the rise and maximum of solar cycle 23 (February 1998–December 2000). An excellent correlation was found between storms with Kp  7 and the peak flux of large energetic ion enhancements that almost always (93% of time in our time period) accompany the arrival of interplanetary shocks at L1. However, as there are many more large EIEs than large geomagnetic storms, other characteristics were investigated to help determine which EIEs are likely to be followed by large storms. An additional parameter, the magnitude of the post-shock total magnetic field at the L1 Lagrangian point, is introduced here. This improves the identification of the EIEs that are likely to be followed by large storms. A forecasting technique is developed and tested on the time period of the original study (the training data set). The lead times, defined as the times from the arrival of the shock to the start of the 3-h interval of maximum Kp, are also presented. They range from minutes to more than a day; the average for large storms is 7 h. These times do not include the extra warning time given when the EI flux cross the high thresholds ahead of the shock. Because the data-stream used in the original study is no longer available, we extended the original study (1998–2000) to 2001, in order to: (a) investigate EIEs in 2001; (b) present a validation of the technique on an independent data set; (c) compare the results based on the original (P1) energy channel to those of the replacement (P1′) and (d), determine new EIE thresholds for forecasting geomagnetic storms using P1′ data. The verification of this P1′ training data set is also presented, together with lead times.  相似文献   

7.
On five occasions in 1977 and 1978, Cygnus X-1 was observed using the Low-Energy Detectors of the UCSD/MIT Hard X-Ray and Low-Energy Gamma-Ray Experiment on the HEAO-1 satellite. Rapid (0.08 s ≤ t ≤ 1000 s) variability was found in the 10 – 140 keV band. The power spectrum was “white” for 10−3 Hz < f ≤ 5 × 10−2 Hz and was proportional to f−1 for 5 × 10−2 Hz ≤ f < 3 Hz, indicating correlations on all time scales < 20 s. If the emission is produced by Comptonization of a soft photon flux in a hot cloud, the heating of the cloud cannot be constant; it must vary on time scales up to 20 seconds. A variable accretion rate could cause the observed effects.  相似文献   

8.
ETALON spin period determination from kHz SLR data   总被引:1,自引:1,他引:0  
Using kHz Satellite LASER Ranging (SLR) data of the SLR station Graz only, we determined the spin periods of the two ETALON satellites – launched into high orbits of about 20,000 km – and their spin period increase during 3 years. The determined spin period values and spin period increase rates at 2004-01-01 are: TET1 = 63 s + 0.484 s/year, and TET2 = 65.5 s + 0.401 s/year.  相似文献   

9.
We present a simple yet numerically robust technique, using autoregressive linear filters, to remove unwanted “colored noise” from solar wind and radiation belt electron data at sub-daily resolution. The remaining signal is then studied using finite impulse response linear prediction filters to represent the driven portion of the linear dynamics that describe the coupling between solar wind speed and electron flux. Sub-daily resolution response profiles covering magnetic L-shells between 1.1 and 8.0 RE are presented which are consistent with daily resolution response functions. Namely, while there is strong global coherence governing electron flux dynamics, there are at least two distinct responses. The first response is an immediate dropout of electrons between L = 4 and L = 7 that is at least a partly adiabatic effect associated with enhancements in the ring current. This is followed by a 1–2 day delayed enhancement across the same L-shells that is likely a result of increased radial diffusion. The second response is an immediate enhancement seen between L = 3 and L = 4 with a typical duration of less than one day. Plausible explanations for this second response are briefly discussed, but neither empirical nor theoretical evidence can establish conclusively a definite physical cause. Finally, the response profiles show significant solar cycle and seasonal dependencies, indicating that better model output might be achieved with: (1) additional simultaneous solar wind inputs; (2) more sophisticated dynamical model structures capable of incorporating non-linear feedback; and/or (3) time-adaptive linear filters that can track non-stationary dynamics in time.  相似文献   

10.
Data are presented on the zones of energetic particle precipitation at middle and low latitudes observed during and after magnetic storm injection events. Satellite measurements of the equatorial zone ion flux (~ 103 - 104 cm?2 s?1 sr?1 for E > 45 keV at 240 km) are consistent with the development of a temporary low altitude ion radiation belt at the magnetic equator. In the midlatitude ion zone the flux (~ 103 - 105 ions cm?2 s?1 sr?1 for E > 45 keV at 220 km) is directly related to magnetic activity while the midlatitude electron zone flux has a delayed response (~ 4 days).  相似文献   

11.
Intense geomagnetically induced currents (GIC) can hamper rail traffic by disturbing signaling and train control systems. GIC threats have been a concern for technological systems at high-latitude locations due to geomagnetic disturbances driven by substorm expansion electrojet or convection electrojet intensifications. However, other geomagnetic storm processes such as storm sudden commencement (SSC) and geomagnetic pulsations can also cause GIC concerns for technological systems. We present in this paper the first evidence based on statistical data for links between geomagnetic disturbances and faulty operations (anomalies) in the functioning of railway automatics and telemetry. We analyze anomalies of automatic signaling and train control equipment which occurred in 2004 on the East-Siberian Railway (corrected geomagnetic latitude m = 46–51°N and longitude λm = 168–187°E). Our results reveal a seasonal effect in the number of anomalies per train similar to the one observed in geomagnetic activity (Kp, Ap, Dst indices). We also found an increase by a factor of 3 in the total duration of daily anomalies during intense geomagnetic storms (local geomagnetic index specific to Siberian Observatory Amax > 30), with a significant correlation between the daily sum of durations of anomalies with geomagnetic activity. Special attention was paid to failures not related to recognized technical malfunctions. We found that the probability of these failures occurring in geomagnetically disturbed periods was 5–7 times higher than the average anomaly occurrence.  相似文献   

12.
IPM has detected nightside 135.6 nm emission enhancements over a wide latitude range, from the sub-auroral latitudes to the equatorial regions during geomagnetic storms. Our work, presented in this paper, uses the data of IPM to understand these 135.6 nm emission enhancements during of geomagnetic storms and studies the variations of total electron content (TEC) and the F2 layer peak electron density (NmF2) in the region of enhanced emissions. Middle and low latitude emission enhancements are presented during several medium storms in 2018. The variations of both the integrated electron content (IEC) derived from the nighttime OI 135.6 nm emission by IPM and TEC from the International GNSS Service (IGS) relative to the daily mean of magnetically quiet days of per each latitude bin (30°≦geographic latitude < 40°, 15°≦geographic latitude < 30°, 0°≦geographic latitude < 15°, ?15°≦geographic latitude < 0°, ?30°≦geographic latitude < -15°, ?40°≦geographic latitude < -30°) are investigated and show that on magnetically storm day, IEC by IPM always increases, while TEC from IGC may increase or decrease. Even if both increase, the increase of IEC is greater than that of TEC. From the comparison of IEC and TEC during magnetic storms, it can be seen that the enhancement of the nighttime 135.6 nm emissions is not entirely due to the ionospheric change. The time of IEC enhancements at each latitude bin is in good agreement, which mainly corresponds to the main phase time of the geomagnetic storm event and lasts until the recovery phase. The available ground-based ionosonde stations provide the values of NmF2 which match the 135.6 nm emissions measured by IPM in space and time. The variations of NmF2 squared can characterize the variations of the OI 135.6 nm emissions caused by O+ ions and electrons radiative recombination. The study results show that the OI 135.6 nm emission enhancements caused by O+ ions and electrons radiative recombination (where NmF2 squared increases) are obviously a contribution to the measured 135.6 nm emission enhancements by IPM. The contribution accounts for at least one of all contributions to the measured 135.6 nm emission enhancements by IPM. However, where the NmF2 squared provided by ionosonde decrease or change little (where the OI 135.6 nm emissions cause by O+ ions and electrons radiative recombination also decrease or change little), the emission enhancements measured by IPM at storm-time appear to come from the contributions of other mechanisms, such as energetic neutral atoms precipitation, or the mutual neutralization emission (O+ + O-→2O + h? (135.6 nm)) which also occupies a certain proportion in 135.6 nm airglow emission at night.  相似文献   

13.
Median values of ionosonde hF data acquired at Ibadan (Geographic:7.4°N, 3.9°E, Magnetic: dip 6°S, and magnetic declination, 3°W), Nigeria, West Africa, have been used to determine vertical ion drift (electric field) characteristics in the postsunset ionosphere in the African region during a time of high solar activity (average F10.7 −208). The database spans from January and December 1958 during the era of International Geophysical Year (IGY) for geomagnetic quiet conditions. Bimonthly averaged diurnal variations patterns are very similar, but differ significantly in magnitude and in the evening reversal times. Also, monthly variations of F-region vertical ion drift reversal times inferred from the time of hF maximum indicates early reversal during equinoxes and December solstice months except for the month of April. Late reversal is observed during the June solstice months. The equatorial evening prereversal enhancement in vertical ion drift (Vzp) occurs largely near 1900 LT with typical values 20–45 m/s. Comparison of Ibadan ionosonde Vzp with the values of prereversal peak velocity reported for Jicamarca (South America), Kodaikanal (India), and Scherliess and Fejer global model show considerable disparity. The changes of postsunset peak in virtual height of F-layer (hFP) with prereversal velocity peak Vzp are anti-correlated. Investigation of solar effects on monthly values of Vzp and hFP revealed that these parameters are independent of monthly averaged solar flux intensity during quiet-time sunspot maximum conditions.  相似文献   

14.
The N4,5OO Auger electron spectrum in the kinetic energy region (14–37) eV has been measured with high resolution at electron incident energies between 71 eV and 2019 eV. The Auger and satellite lines are assigned by comparison with previous literature data. Several states which correspond to the resonant Auger transitions from the 4d3/2, 5/2 6p states are observed. The PCI effects on the N5-O2,3O2,3(1S0) Auger peak when the incident electron energy approaches to the N5 edge (67.55 eV) is investigated and it is found that the dependence of the energy shift on the excess energy, Eexc, is well represented by the function Eexcβ with β = (-1.40 ± 0.05). The N3 N4,5O2,3 Coster-Kronig spectrum is measured at various electron incident energies. The assignments of the features are made in comparison with a similar spectrum from synchrotron radiation measured by Kivimäki et al. [J. Electron Spectrosc. Relat. Phenom. 1999, 101103, 43–47]. The Auger spectrum in the kinetic energy regions (68–78) eV and (90–138) eV is observed for the first time in an electron impact experiment and a comparison is made with the photoionization experiment by Hikosaka et al. [Phys. Rev. A 2007, 76, 032708].  相似文献   

15.
We have developed an operational code, SOLPENCO, that can be used for space weather prediction schemes of solar energetic particle (SEP) events. SOLPENCO provides proton differential flux and cumulated fluence profiles from the onset of the event up to the arrival of the associated traveling interplanetary shock at the observer’s position (either 1.0 or 0.4 AU). SOLPENCO considers a variety of interplanetary scenarios where the SEP events develop. These scenarios include solar longitudes of the parent solar event ranging from E75 to W90, transit speeds of the associated shock ranging from 400 to 1700 km s−1, proton energies ranging from 0.125 to 64 MeV, and interplanetary conditions for the energetic particle transport characterized by specific mean free paths. We compare the results of SOLPENCO with flux measurements of a set of SEP events observed at 1 AU that fulfill the following four conditions: (1) the association between the interplanetary shock observed at 1 AU and the parent solar event is well established; (2) the heliolongitude of the active region site is within 30° of the Sun–Earth line; (3) the event shows a significant proton flux increase at energies below 96 MeV; (4) the pre-event intensity background is low. The results are discussed in terms of the transit velocity of the shock and the proton energy. We draw conclusions about both the use of SOLPENCO as a prediction tool and the required improvements to make it useful for space weather purposes.  相似文献   

16.
A linear stability analysis is applied to determine the onset of oscillatory thermocapillary convection in cylindrical liquid bridges of large Prandtl numbers (4  Pr  50). We focus on the relationships between the critical Reynolds number Rec, the azimuthal wave number m, the aspect ratio Γ and the Prandtl number Pr. A detailed RecPr stability diagram is given for liquid bridges with various Γ. In the region of Pr > 1, which has been less studied previously and where Rec has been usually believed to decrease with the increase of Pr, we found Rec exhibits an early increase for liquid bridges with Γ around one. From the computed surface temperature gradient, it is concluded that the boundary layers developed at both solid ends of liquid bridges strengthen the stability of basic axisymmetric thermocapillary convection at large Prandtl number, and that the stability property of the basic flow is determined by the “effective” part of liquid bridge.  相似文献   

17.
18.
Relativistic neutrons were observed by the neutron monitors at Mt. Chacaltaya and Mexico City and by the solar neutron telescopes at Chacaltaya and Mt. Sierra Negra in association with an X17.0 flare on 2005 September 7. The neutron signal continued for more than 20 min with high statistical significance. Intense emissions of γ-rays were also registered by INTEGRAL, and during the decay phase by RHESSI. We analyzed these data using the solar-flare magnetic-loop transport and interaction model of Hua et al. [Hua, X.-M., Kozlovsky, B., Lingenfelter, R.E. et al. Angular and energy-dependent neutron emission from solar flare magnetic loops, Astrophys. J. Suppl. Ser. 140, 563–579, 2002], and found that the model could successfully fit the data with intermediate values of loop magnetic convergence and pitch-angle scattering parameters. These results indicate that solar neutrons were produced at the same time as the γ-ray line emission and that ions were continuously accelerated at the emission site.  相似文献   

19.
Preliminary results are reported for gamma ray observations of the galactic center region made during a 15 hour balloon flight from Alice Springs, Australia on April 18, 1979. The observations were carried out with the UCR double-scatter gamma-ray telescope at energies of 1 to 30 MeV. The observations are compatible with a galactic source of approximately equal brightness along the region 300°<ℓII<60°. The energy distribution joins smoothly to previous spark chamber results at energies above 30 MeV and to scintillator results below 1 MeV. It appears to be a combination of nuclear gamma ray lines superimposed on a bremsstrahlung spectrum with a power law (1.3±.7) × 10−3 E(1.7±.2). The 12C* line at 4.4 MeV appears to be present with a significance of about 16σ. The flux in the line is (6±3) × 10−4photons cm−2s−1rad−1. The oxygen line at 6.1 MeV does not seem to appear significantly above background.  相似文献   

20.
HF radio wave observations have been carried out with an oblique ionospheric sounding (OIS) method on the radio path from St. Petersburg to Longyearbyen (Svalbard), and experimental ionograms were obtained for December 2001. These ionograms have been analysed to investigate the impact of the main ionospheric trough (MIT) and magnetic disturbances on the signals on this path. The observations during weakly disturbed (Kр = 2) magnetic conditions on 14–15 December 2001 were compared with predictions from ray-tracing through a numerical model of the ionosphere. The ray-tracing computer program synthesizes the OIS ionograms by means of the “shooting method”. This method calculates trajectories of HF radio waves for different values of elevation angle and transmission frequency. There was a variety of calculated trajectories, from which we choose those which reach the receiver, and the selected paths provide a synthesis of the oblique ionograms. To simulate HF radio wave propagation, we apply a three-dimensional distribution of the electron density calculated with the mathematical model of the high-latitude ionosphere developed in the Polar Geophysical Institute (PGI). These numerical simulations permit us to interpret specific peculiarities of the OIS data such as abnormal propagation modes, increased delays of signals, enhanced MOF (maximum observed frequency) values etc. New results of the study are summarised as follows. (1) An unusual feature of the propagation along the path is the change of propagation mechanism during substorms on entering a path midpoint (or 1-hop reflection point) to the MIT. (2) Even weak substorms, having the distinguished intensities, lead to the appearance of different types of irregularities observed by the CUTLASS radar and therefore to the different propagation modes and F2MOF values. (3) The PGI model of the ionosphere was first used for ray-tracing at high latitudes. The model results are basically in a good qualitative agreement with experimental observations. This model provides the satisfactory agreement between the calculated and experimental F2MOF values while not correctly representing the fine structure of the experimental OIS ionograms at night. An agreement between the calculated and experimental data is better for day and evening hours than at night.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号