首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We highlight how the downward revision in the distance to the star cluster associated with SGR 1806–20 by Bibby et al. (2008) reconciles the apparent low contamination of BATSE short GRBs by intense flares from extragalactic magnetars without recourse to modifying the frequency of one such flare per 30 years per Milky Way galaxy. We also discuss the variety in progenitor initial masses of magnetars based upon cluster ages, ranging from ∼50 M for SGR 1806–20 and AXP CXOU J164710.2–455216 in Westerlund 1 to ∼17 M for SGR 1900+14 according to Davies et al. (2009) and presumably also 1E 1841–045 if it originated from one of the massive RSG clusters #2 or #3.  相似文献   

2.
Three recent developments in the field of formation and evolution of neutron stars and black holes in binaries are addressed:
• The finding that there is a class of neutron stars, formed in interacting binaries, that do not receive kick velocities in their birth events. This finding is particularly important for our understanding of the formation – and formation rates – of double neutron stars. It is argued that these low-kick neutron stars, which tend to have low masses, are formed by a different physical mechanism than the neutron stars that receive large kick velocities at birth.

• The occurrence of velocity kicks in the formation events of stellar black holes.

• The nature of the companions of millisecond X-ray pulsars.

Keywords: Astrophysics; X-ray binaries; Neutron stars; Black holes  相似文献   


3.
With its ability to look at bright galactic X-ray sources with sub-millisecond time resolution, the Rossi X-ray Timing Explorer (RXTE) discovered that the X-ray emission from accreting compact stars shows quasi-periodic oscillations on the dynamical timescales of the strong field region. RXTE showed also that waveform fitting of the oscillations resulting from hot spots at the surface of rapidly rotating neutron stars constrain their masses and radii. These two breakthroughs suddenly opened up a new window on fundamental physics, by providing new insights on strong gravity and dense matter. Building upon the RXTE legacy, in the Cosmic Vision exercise, testing General Relativity in the strong field limit and constraining the equation of state of dense matter were recognized recently as key goals to be pursued in the ESA science program for the years 2015–2025. This in turn identified the need for a large (10 m2 class) aperture X-ray observatory. In recognition of this need, the XEUS mission concept which has evolved into a single launch L2 formation flying mission will have a fast timing instrument in the focal plane. In this paper, I will outline the unique science that will be addressed with fast X-ray timing on XEUS.  相似文献   

4.
We investigate the relation between the pulse and orbital periods in high-mass X-ray binaries (HMXBs), in order to find the candidates of magnetar descendants in HMXBs. We suggest that magnetar descendants can be found among the HMXBs with relatively shorter orbital periods and longer pulse periods.  相似文献   

5.
The results from the photometric observations of the x-ray source KR Aur for the period Oct. 1979 – Mai 1983 obtained at the National Astronomical Observatory, Bulgarian Acedemy of Sciences, are presented. The 1981 – 1982 minimum of the light curve is discussed.  相似文献   

6.
We used the ugr magnitudes of 1437467 F-G type main-sequence stars with metal abundance -2?[Fe/H]?+0.2 dex and estimated radial and vertical metallicity gradients for high Galactic-latitude fields, 50°<b?90° and 0°<l?360°, of the Milky Way Galaxy. The radial metallicity gradient d[Fe/H]/dR=-0.042±0.011 dex kpc?1 estimated for the stars with 1.31<z1.74 kpc is attributed to the thin-disc population. While, the radial gradients evaluated for stars at higher vertical distances are close to zero indicating that the thick disc and halo have not undergone a radial collapse phase at least at high Galactic latitudes. The vertical metallicity gradients estimated for stars with three different Galactic latitudes, 50°<b?65°,65°<b?80° and 80°<b?90° do not show a strong indication for Galactic latitude dependence of our gradients. The thin disc, 0.5<z?2 kpc, with a vertical metallicity gradient dFe/H/dz=-0.308±0.018 dex kpc?1, is dominant only in galactocentric distance interval 6<R?10 kpc, while the thick disc (2<z?5 kpc) could be observed in the intervals 6<R?10 and 10<R?15 kpc with compatible vertical metallicity gradients, i.e. dFe/H/dz=-0.164±0.014 dex kpc?1 and dFe/H/dz=-0.172±0.016 dex kpc?1. Five vertical metallicity gradients are estimated for the halo (z>5 kpc) in three galactocentric distance intervals, 6<R?10,10<R?15 and 15<R?20 kpc. The first one corresponding to the interval 6<R?10 kpc is equal to dFe/H/dz=-0.023±0.006 dex kpc?1, while the others at larger galactocentric distances are close to zero. We derived synthetic vertical metallicity gradients for 2,230,167 stars and compared them with the observed ones. There is a good agreement between the two sets of vertical metallicity gradients for the thin disc, while they are different for the thick disc. For the halo, the conspicuous difference corresponds to the galactocentric distance interval 6<R?10 kpc, while they are compatible at higher galactocentric distance intervals.  相似文献   

7.
This paper reviews the multi-wavelength properties of two groups of pulsars, the Anomalous X-ray Pulsars (AXPs) and the Soft Gamma-ray Repeaters (SGRs), that are generally interpreted as isolated neutron stars with strong magnetic fields of 1014–1015 G. Most of these sources have now been observed at different wavelengths, from the radio band to hard X-rays. Several new members of these classes have been discovered in the last few years, due to their transient nature. The distinction between AXPs and SGRs is becoming less evident, as more observations are collected which show similar properties in all these sources.  相似文献   

8.
We describe the results obtained with Target of Opportunity observations of the galactic sources SGR 1627–41 and 1E 1547–5408. These two transients show several similarities supporting the interpretation of Anomalous X-ray Pulsars and Soft Gamma-ray Repeaters as a single class of strongly magnetized neutron stars.  相似文献   

9.
We study the long term dynamics of isolated neutron stars (NSs) for different initial conditions. From the resulting phase-space distributions, we estimate the fraction of NSs bound to the Milky Way. We also estimate the surface and spatial density of NSs in the solar neighborhood and the mean velocity of NSs in the Galactic disk. Estimates of the sky density of NSs towards specific lines of sight, i.e. the Galactic center and the Magellanic Clouds, are also given.  相似文献   

10.
Strange stars with low masses are suggested to exist in reality, the origin of which could be via accretion-induced collapse of white dwarfs. Such a strange star is likely bare, and would thus spin very fast, even to a period of <0.1 ms. Strange stars with low masses may differ from those with solar masses in various astrophysical appearances. Observations to test this “low-mass” idea are proposed.  相似文献   

11.
The evolution of luminous QSOs is linked to the evolution of massive galaxies. We know this because the relic black-holes found locally have masses dependent on the properties of the host galaxy’s bulge. An important way to explore this evolution would be to measure dependences of black-hole masses and Eddington accretion ratios over a range of redshifts, i.e., with cosmological age. For low redshift QSOs (and their lower luminosity Seyfert galaxy counterparts) it has been possible to infer black-hole masses from the luminosities and velocity dispersions of their host-galaxy bulges. These masses agree with those virial black-hole masses calculated from the Doppler widths of the broad Hβ emission lines. The latter method can then be extended to more distant and luminous QSOs, up to redshifts of 0.6 with ground-based optical observations. We discuss ways to extend these explorations to higher redshifts – up to 3 using the widths of QSOs’ broad UV emission lines, and in principle, and to redshifts near 4 from ground-based infrared observations of rest-frame Hβ at 2.5 μm. We discuss the possibility of investigating the accretion history of the higher redshift QSOs using measures of Eddington accretion ratio – the soft X-ray spectral index and the eigenvectors of Principal Components Analyses of QSOs’ UV emission-line spectra.  相似文献   

12.
The Franco-Soviet Signe experiments on Venera 11 and Venera 12 allow a spectral analysis of gamma-ray bursts with a time resolution of 250 ms. Evidence is presented for i) short annihilation flashes of up to 20 photons cm−2s−1 and ii) rapid variations of the continuum, from a study of the intense 4 November 1978 event.  相似文献   

13.
Stars that explode as Type I Supernovae (SNI) are white dwarfs with masses practically equal to the Chandrasekhar limit Mch. These white dwarfs forme either as a result of gas overflow onto a degenerate component in a binary system or due to the evolution of nuclei of the stars whose mass, on the main sequence, was 3 to 7 Mo. The masses of their nuclei are quite close to Mch. It is convenient to consider three types of stellar evolution 1) “hyperbolic”: masses of nuclei formed as a result of evolution are > Mch; such evolution ends in a Type II Supernova (SNII) outburst; 2) “parabolic” - masses of nuclei ≈ Mch, with the evolution ending in an SNI outburst; 3) “elliptical” with nuclei masses < Mch. The latter type of evolution leads to the formation of planetary nebulae and white dwarfs. A new hypothesis is suggested that explains more frequent occurrence of SNI in irregular galaxies by flashes of star formation.  相似文献   

14.
Forty years passed since the optical identification of the first isolated neutron star (INS), the Crab pulsar. 25 INSs have been now identified in the optical (O), near-ultraviolet (nUV), or near-infrared (nIR), hereafter UVOIR, including rotation-powered pulsars (RPPs), magnetars, and X-ray-dim INSs (XDINSs), while deep investigations have been carried out for compact central objects (CCOs), Rotating RAdio transients (RRATs), and high-magnetic field radio pulsars (HBRPs). In this review I describe the status of UVOIR observations of INSs, their emission properties, and I present the results from recent observations.  相似文献   

15.
Hard X-ray emitting symbiotic stars are candidates for SN Ia progenitors. The importance of Type Ia SNe as standard candles for cosmology makes the study of their progenitor systems particularly important. Additionally, they provide one of the most promising laboratories for the study of astrophysical jets. Typically, the X-ray emission in these systems is modeled with a collisional plasma model, sometimes with an emission measure distribution taken from a cooling flow model. The lack of any coherent periods in both X-rays and optical wave band strongly suggests that the accreting white dwarfs in the hard X-ray symbiotic stars are non-magnetic. Although relatively few have been discovered to date, but we believe that there are very many of them in our galaxy and could be possible candidates for the Galactic Ridge X-ray Emissions (GRXE).  相似文献   

16.
In recent years, the drag-free satellites have been widely used for some fundamental physical experiments, such as checking short-range effects of general relativity, geopotential determination and the exploration of static ocean current. And the space-borne detector of gravitational waves is one of the important applications for drag-free satellites in the future. In this study, the estimation of relative motion state and disturbance for test masses of drag-free satellite after release are researched. Firstly, the relative motion model between the test masses is established based on corresponding reference frames. Secondly, a self-recurrent wavelet neural network estimator is designed to estimate the pure gravitational relative motion state and disturbance for the test masses, and the sliding mode controller is used to transfer the relative motion state to the ideal state. Finally, the proposed estimation methods are verified by the simulation results.  相似文献   

17.
Selected results from the Rossi X-ray Timing Explorer All-Sky Monitor are presented to illustrate the phenomenology of the light curves. The sensitivity to periodic intensity variations is indicated by the folded light curve of AM Her. The gray line between transient and persistent sources is emphasized. Light curves of a range of systems comprising black holes or neutron stars and low and high mass companion stars show that the behavior of these systems is often, but not always, characteristic.  相似文献   

18.
Richardson potential is an phenomenological interquark interaction taking care of two aspects of QCD, namely the asymptotic freedom and the confinement. The original potential has a scale parameter having value 400 MeV and is well tested in hadronic property calculations. This potential was then used in strange star calculation. Strange stars are very compact stars composed of strange quark matter, i.e. a very high density strange quark phase consisting of deconfined u, d and s quarks. Here the value of the scale parameter was taken as 100 MeV. The argument was that for a deconfined quark system like a strange star, the scale parameter may have a value quite different from that used in hadronic sector. To remove this discrepancy we introduced two scale parameters in the potential, one for the asymptotic freedom part and the other for the confining part. With suitable values of the parameters, this modified potential has been successfully used in both baryonic property and strange star calculations. The Equation of States obtained with the modified potential are also used to obtain mass–radius relations for the strange stars.  相似文献   

19.
Formation of relativistic jets in the magnetosphere of collapsing stars is considered. These jets will be formed in the polar caps of magnetosphere of collapsing star, where the stellar magnetic field increases during the collapse and the charged particles are accelerated. The jets will generate non-thermal radiation. The analysis of dynamics and emission of particles in the stellar magnetosphere under collapse shows that collapsing stars can be powerful sources of relativistic jets.  相似文献   

20.
The eccentric binary model for X Persei is discussed with a view to most recent determination of mass, radius and mass loss rate. The existence of such a system depends critically on the value of viscosity in the outer layers of the star and, in the case where viscosity is induced by shear turbolence, on the axial rotational velocity. The parameters of the binary system are derived in the most favourable case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号