首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
EUVITA is a set of 8 extreme UV normal incidence imaging telescopes, each of them sensitive in a narrow band (λ/Δλ = 15 to 80), centered at wavelengths between 50 and 175 Å. Each telescope has an effective area of a few cm2; a field of view of 1.2° and a spatial resolution of 10 arcsec.

EUVITA will be flown on the Russian mission SPECTRUM X-G. This satellite will be launched in a highly eccentric orbit with a period of 4 days, allowing long, uninterrupted observations (e.g. 105 seconds). EUVITA's narrow spectral bands allow the measurement of source parameters such as temperature or power law index as well as interstellar absorption, and will resolve groups of strong lines emitted by optically thin hot plasmas.  相似文献   


2.
The Hopkins Ultraviolet Telescope (HUT) was flown aboard the space shuttle Columbia as part of the Astro-1 mission during December 1990. During the nine-day flight, HUT carried out 3 Å resolution spectrophotometry of a wide variety of astronomical objects, including a number of stellar targets, in the 912–1860 Å range of the far ultraviolet. A few nearby stars were observed in the 415–912 Å range of the extreme ultraviolet as well. For nearly all of these targets, the spectra obtained by HUT are the first ever obtained in the spectroscopically rich region between Lyman (1216 Å) and the Lyman limit (912 Å). Here, we present highlights of the results obtained by HUT in a variety of areas of stellar astronomy.  相似文献   

3.
The wide field (7.5°), arc minute imaging, and spectroscopic capabilities of the Far Ultraviolet FAUST telescope which will be flown on Spacelab I can provide valuable information on Comet Halley. The use of the FAUST instrument in obtaining images of the hydrogen coma at 1216 Å, and in obtaining objective grating spectroscopy from 1300–3300 Å of the comet and tail, are described. The FAUST images would provide large field of view data that are required for model calculations of gas production rates and the determination of scale lengths and lifetimes of ion species.  相似文献   

4.
A 40.6 cm Newtonian telescope has been interfaced to the Fabry-Perot interferometer at the Arecibo Observatory to make high spectral resolution measurements of Comet Halley emissions at 6562.72 Å (H-alpha) and 6300.3 Å (OI). In March 1986 the H-alpha surface brightness for a 5′.9 field of view centered on the comet nucleus decreased from 39±7.8 rayleighs on 12 March to 16±3.8 rayleighs on 23 March. The atomic hydrogen production rate on 12 March 1986 was 1.62±0.5 × 1030 s−1, and on 23 March 1986 it was 6.76±2.3 × 1029 s−1. Using spectral resolution of 0.196 Å, we found the atomic hydrogen outflow velocity to be approximately 7.9±1.0 km s−1. In general, the H-alpha spectra are highly structured, and indicative of a multiple component atomic hydrogen velocity distribution. An isotropic outflow of atomic hydrogen at various velocities is not adequate to explain the spectra measured at H-alpha. The 6300.3 Å emission of O(1D) had a surface brightness of 81±16 rayleighs on 15 March 1986, and 95±11 rayleighs on 17 March 1986. After adjustment for atmospheric extinction, the implied O(1D) production rate on 15 March is 6.44±3.0 × 1028 s−1, and the production rate on 17 March is 5.66±2.7 × 1028 s−1. These spectra included a feature at 6300.8 Å that we attribute to NH2. The brightness of this emission feature was 37±11 rayleighs on 15 March.  相似文献   

5.
The observations of X-ray Nova in Musca (GRS1124-684) by two coded mask telescopes on board GRANAT observatory provided spectral data in broad 3 – 1300 keV band. During these observations, spanned over a year, the Nova was detected in a three apparently different spectral states, corresponding to different epochs of the soft X-ray light curve: (1) A spectrum with two distinct components (soft, below 8 keV and hard power law tail with slope 2.5, detected up to 300 keV). The soft emission changed gradually with characteristic decay time around 30 days, while power law component exhibited strong variability on the time scales of several hours and decreased much more slowly. (2) A soft spectrum (without hard power law tail), observed during the “kick” of the soft X-ray light curve. (3) A hard power law spectrum with slope 2.2. Thus, while the 3 – 300 keV luminosity decreased by more than order of magnitude, the source passed through all spectral states known for galactic black hole candidates (Cyg X-1, GX339-4, 1E1740.7-2942, GRS1758-258 etc.).

On January 20–21 1991, the SIGMA telescope aboard GRANAT detected a relatively narrow variable emission line near 500 keV (Fig.1,2) with net flux ≈ 6 · 10−3 phot/s/cm2, most probably related with electron-positron annihilation processes, occurring in the source /1–4/. Additional excess above power law continuum, centered around 200 keV, was found during this observation.  相似文献   


6.
Astrosat will be the first full-fledged Indian Astronomy mission aimed at multiwavelength studies in the optical, near- and far-UV and a broad X-ray spectral band covering 0.5–100 keV. This mission will have the capability of high time-resolution X-ray studies (10 μs timing), low and medium energy-resolution spectral studies and high angular-resolution (about 2″) imaging observations in the UV and optical bands simultaneously. This is realized by using a set of three co-aligned X-ray astronomy instruments and one UV imaging telescope consisting of two similar instruments. Detection and timing studies of X-ray transients and persisting sources will be done by a Scanning Sky X-ray Monitor. This mission will enable studies of different classes of galactic and extragalactic sources in the frontier area of high energy astronomy. Scientific objectives of the mission are highlighted in this paper. A brief summary of the design and characteristics of the X-ray and UV instruments and their expected sensitivities are presented.  相似文献   

7.
The Hubble Space Telescope offers enormous advantages to infrared astronomy in certain situations. The advantages of being above the atmosphere include an increase in spatial resolution, a much wider range of wavelengths available, and lower background radiation. Compared to proposed cooled telescopes, HST offers higher spatial resolution and increased collecting area. HST is particularly well suited to observations at wavelengths less than ~5 μm, where the diffraction limit is less than the seeing limit from the ground and thermal emission does not seriously compromise the sensitivity of the detectors. HST is also favorable for observations requiring high spectral resolution at all wavelengths not accessible from the ground.  相似文献   

8.
The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project grown out of the needs of the astronomical community to have future access to the UV range. WSO/UV consists of a single UV telescope with a primary mirror of 1.7 m diameter feeding the UV spectrometer and UV imagers. The spectrometer comprises three different spectrographs, two high-resolution echelle spectrographs (the High-Resolution Double-Echelle Spectrograph, HIRDES) and a low-dispersion long-slit instrument. Within HIRDES the 102–310 nm spectral band is split to feed two echelle spectrographs covering the UV range 174–310 nm and the vacuum-UV range 102–176 nm with high spectral resolution (R > 50,000). The technical concept is based on the heritage of two previous ORFEUS SPAS missions. The phase-B1 development activities are described in this paper considering performance aspects, design drivers, related trade-offs (mechanical concepts, material selection etc.) and a critical functional and environmental test verification approach. The current state of other WSO/UV scientific instruments (imagers) is also described.  相似文献   

9.
We present here the first results obtained by the Ultraviolet Coronagraph Spectrometer (UVCS) operating on board the SOHO satellite. The UVCS started to observe the extended corona at the end of January 1996; it routinely obtains coronal spectra in the 1145 Å – 1287 Å, 984 Å – 1080 Å ranges, and intensity data in the visible continuum. Through the composition of slit images it also produces monocromatic images of the extended corona. The performance of the instrument is excellent and the data obtained up to now are of great interest. We briefly describe preliminary results concerning polar coronal holes, streamers and a coronal mass ejection, in particular: the very large r.m.s. velocities of ions in polar holes (hundreds km/sec for OVI and MgX); the puzzling difference between the HI Ly- image and that in the OVI resonance doublet, for most streamers; the different signatures of the core and external layers of the streamers in the width of the ion lines and in the OVI doublet ratio, indicating larger line-of-sight (l.o.s.) and outflow velocities in the latter.  相似文献   

10.
One of the main guidelines for future X-ray astronomy projects like, e.g., XEUS (ESA) and Generation-X (NASA) is to utilize grazing-incidence focusing optics with extremely large telescopes (several tens of m2 at 1 keV), with a dramatic increase in collecting area of about two order of magnitude compared to the current X-ray telescopes. In order to avoid the problem of the source's confusion limit at low fluxes, the angular resolution required for these optics should be superb (a few arcsec at most). The enormous mirror dimensions together with the high imaging performances give rise to a number of manufacturing problems. It is basically impossible to realize so large mirrors from closed Wolter I shells which benefit from high mechanical stiffness. Instead the mirrors need to be formed as rectangular segments and a series of them will be assembled in a petal. Taking into account the realistic load capabilities of space launchers, to be able to put in orbit so large mirror modules the mass/geometric-area ratio of the optics should be very small. Finally, with a so large optics mass it would be very difficult to provide the electric power for an optics thermal active control, able to maintain the mirrors at the usual temperature of 20 °C. Therefore, very likely, the optics will instead operate in extreme thermal conditions, with the mirror temperature oscillating between −30 and −40 °C, that tends to exclude the epoxy replication approach (the mismatch between the CTE of the substrate and that of the resin would cause prohibitively large deformations of the mirror surface profiles). From these considerations light weight materials with high thermal–mechanical properties such as glass or ceramics become attractive to realize the mirrors of future Xray telescopes. In this paper, we will discuss a segments manufacturing method based on BorofloatTM glass. A series of finite element analysis concerning different aspects of the production, testing and integration of the optics are also presented as well.  相似文献   

11.
SPIRIT (SPectroheliograph Ic soft X-Ray Imaging Telescope) is the current experiment on board theCORONAS-F satellite launched on July 31, 2001 (Oraevskii & Sobelman, 2002). The main goal of this experiment is to study a structure and dynamics of the solar atmosphere in the wide scale of heights (from the chromosphere to a far corona) and of temperatures (from ten thousands through thirty millions Kelvins) by means of the XUV imaging spectroscopy. Since the launch of the CORONAS-F satellite more than three hundred thousands of images and spectroheliograms have been recorded. For the first time continuous series of monochromatic full Sun images in MgXII lines at 8.42 Å (doublet: 8.418 and 8.423 Å) were obtained. These series include long-term continuous observations of duration up to 10 days with the cadence of 100 sec as well as temporal sequences with duration of a few minutes and high resolution of 7 sec, synchronized with flares. The spectroheliograms for the whole disk and off-limb regions are also recorded in the spectral bands 177 – 207 and 285 – 335 Å providing spectra with high resolution of various coronal structures including eruptive and transient events. This paper presents preliminary results of quick look analysis of some observational data obtained by means of the SPIRIT spectroheliographs.  相似文献   

12.
The advent of improved γ-ray telescopes which incorporate high angular resolution imaging properties and adequate sensitivity will advance this branch of astronomy from the discovery phase to the exploratory phase. As in other fields, such as radio and X-ray astronomy, which have recently undergone this change, it will prove a fascinating era. The recent development of position sensitive γ-ray detection planes operated in conjunction with a suitable coded aperture mask have made γ-ray telescopes feasible which are capable of generating γ-ray images of the sky with a precision of 1 arc minute over the photon energy range 0.1 to 10 MeV. With a sensitivity of at least 1–10 milliCrab and scintillation standard spectral resolution not only can a large number of discrete γ-ray objects be identified and studied in detail but nuclear γ-ray line images of extended objects such as the Galactic Plane, Cloud Complexes, and supernovae remnants may be generated by this class of astronomical instrument.  相似文献   

13.
Calculated intensities of the Fe X-ray lines due to transitions 2p6 − 2p53d lines (near 15 Å) and 2p6 − 2p53s lines (near 17 Å) are compared with measured line intensities in solar and tokamak spectra. For the solar spectra, temperature Te is obtained from the ratio of the Fe 16.776 Å line to a nearby Fe line. We find excellent agreement for all the major Fe line features in the 15–17 Å region except the Fe 15.015 Å line, the observed flux of which is less than the theoretical by a factor f. We find that f strongly depends on the heliocentric angle θ of the emitting region, being smallest (0.2) when the region is nearest Sun centre, but nearly 1 near the limb. Attributing this to resonance scattering, we are able to deduce the path length and electron density from the observations. Possible application to stellar active regions is given.  相似文献   

14.
A spectrometer for the Halley's Comet Investigation after the VEGA Project is described in the present work. It consists of a telescope and three spectral channels: UV (120 – 290 nm), resolution Δ λ / λ = 170; VIS (280 – 710 nm), resolution Δ λ / λ = 170; IR (950 – 1900 nm), resolution Δ λ / λ = 70.

With the help of two-coordinate scanner, the secondary mirror of the telescope allows spatial scanning of the Comet with a frame 2°×1,5° with 105 different pixels.  相似文献   


15.
Hornet ( , Hymenoptera: Vespinae) workers, queens and males, aged 0–24 hours (i.e. juveniles) and 24 hours and more (i.e. adults) were tested for their responses to changes in the direction of the gravitational force while placed on a flat surface gradually tilted between 0.5° and 180°. The tests were run on non-blind and blind hornets, at temperatures ranging between 18°C and 35°C, in daylight as well as in the dark. Up to 18 hours of age, negative phototaxis prevailed among the hornets, which displayed a clear preference for remaining in the dark regardless of the geotropic position. Between 18–24 hours of age, there was gradual appearance of a sensitivity to change in the geotropic position. Above 24 hr of age, the hornets became sensitive to changes in their declinations, with workers becoming sensitive at a 3–5° declination, queens at 4–5° and males at a declination of 8–19° from the horizontal. Hornet response takes the form of an upward climb, to the highest point of the test surface. Such response required a temperature exceeding 24.8–25°C for workers, 23.2°C for queens and 20.8–21°C for males.  相似文献   

16.
The EXCEDE III sounding rocket flight of April 27, 1990 used a 18 Ampere 2.5 keV electron beam to produce an artificial aurora in the region 90 to 115 km. A “daughter” sensor payload remotely monitored the low-energy X-ray spectrum while scanning photometers measured the spatial profile of prompt emissions of N2+ (1N) and N2 (2P) transitions (3914Å and 3805Å, respectively). Two Ebert-Fastie spectrometers measured the spectral region from 1800 to 8000Å. On the “mother” accelerator payload, the return current electron differential energy spectra were monitored by an electrostatic analyzer (up to 10 keV) and by a retarding potential analyzer (0 eV to 100 eV). We present an overview of the results from this experiment.  相似文献   

17.
The Pinhole/Occulter Facility concept uses a remote occulting mask to provide high resolution observations of the solar corona and of astronomical X-ray sources. With coded-aperture and Fourier-transform techniques, the Pinhole/Occulter makes images at a resolution of 0.2 arc sec for 2 - 120 keV X-rays, using a 50-m boom erected from the payload bay of the Space Shuttle or mounted on a free-flying platform. The remote occulter also creates a large shadow area for solar coronal observations; the Pinhole/Occulter concept includes separate optical and ultraviolet telescopes with 50-cm apertures. These large telescopes will provide a new order of resolution and sensitivity for diagnostic observations of faint structures in the solar corona. The Pinhole/Occulter is a powerful and versatile tool for general-purpose X-ray astronomy, with excellent performance in a broad spectral band complementary to that accessible with AXAF. The large collecting area of 1.5 m2 results in a 5σ detection threshold of about 0.02 μJy for the 2 - 10 keV band, or about 10?5 ph(cm2sec keV)?1 at 20 keV.  相似文献   

18.
Current literature suggests that several lines in the soft X-ray portion of the coronal spectrum may not be optically thin. Here, we confirm the results of Schmelz et al. (1996) who find no significant opacity effects for three of the brightest non-iron resonance lines in this part of the spectrum — O VIII at 18.97Å, Ne IX at 13.45Å, and Mg XI at 9.17Å. A comparison is made between each of these lines and an optically thin “reference” line produced by the same element in the same ionization state — O VIII at 15.18Å, Ne IX at 13.55Å, and Mg XI at 9.23Å. In the latter two cases, the comparison line is the intersystem line of the He-like triplet. 33 spectra from the Solar Maximum Mission Flat Crystal Spectrometer are analyzed, all of which were obtained from non-flaring, quasi-stable active regions.  相似文献   

19.
Extreme and far ultraviolet imaging spectrometers are proposed for the low-altitude orbiter of the BepiColombo mission. The UV instrument, consisting of the two spectrometers with common electronics, aims at measuring (1) emission lines from molecules, atoms and ions present in the Mercury’s tenuous atmosphere and (2) the reflectance spectrum of Mercury’s surface. The instrument pursues a complete coverage in UV spectroscopy. The extreme UV spectrometer covers the spectral range of 30–150 nm with the field of view of 5.0°, and the spectrum from 130 to 430 nm is obtained by the far UV spectrometer. The extreme UV spectrometer employs multi-layer coating technology to enhance its sensitivity at particular emission lines. This technology enables us to identify small ionospheric signatures such as He II (30.4 nm) and Na II (37.2 nm), which could not be detected with conventional optics.  相似文献   

20.
We describe the “Monitor e Imageador de Raios-X” (MIRAX), an X-ray astronomy satellite mission proposed by the high-energy astrophysics group at the National Institute for Space Research (INPE) in Brazil to the Brazilian Space Agency. MIRAX is an international collaboration that includes, besides INPE, the University of California San Diego, the University of Tübingen in Germany, the Massachusetts Institute of Technology and the Space Research Organization Netherlands. The payload of MIRAX will consist of two identical hard X-ray cameras (10–200 keV) and one soft X-ray camera (2–28 keV), both with angular resolution of 5–7. The basic objective of MIRAX is to carry out continuous broadband imaging spectroscopy observations of a large source sample (9 months/yr) in the central Galactic plane region. This will allow the detection, localization, possible identification, and spectral/temporal study of the entire history of transient phenomena to be carried out in one single mission. MIRAX will have sensitivities of 5 mCrab/day in the 2–10 keV band (2 times better than the All Sky Monitor on Rossi X-ray Timing Explorer) and 2.6 mCrab/day in the 10–100 keV band (40 times better than the Earth Occultation technique of the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory). The MIRAX spacecraft will weigh about 200 kg and is expected to be launched in a low-altitude (600 km) circular equatorial orbit around 2007/2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号