首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Astrometry is the major astronomical technique to measure distances, masses and motions of stars. Dividing astrometric techniques into five types according to the size of the field in which a single instrument can produce measurements, the present achievements of the Earth-based astrometry are described. The astrometric activities such as measurements of star diameters, double star relative positioning or stellar parallaxes, search for invisible companions, photographic plate reduction, visual and photoelectric meridian and astrolable astrometry are reviewed. Then, the methods used to construct a quasi-inertial celestial reference frame and to materialize it by a fundamental catalogue are presented and discussed. A much better definition of an absolute reference frame is made possible by VLBI, but the problem of extending it to stellar positions is not yet satisfactorily resolved.The limitations of the ground based astrometry are: the atmospheric turbulence and refraction, Earth's motions and the impossibility to view the entire sky with a single instrument. These limitations are discussed and it is shown how astrometry from space can overcome them. A priori, a gain of two orders of magnitudes in accuracy for all types of astrometry is expected, but at this new level of precision, new effects and limitations will appear, as already shown in the studies of the approved programs.Then, the ESA astrometric satellite HIPPARCOS presently under development is presented. The satellite and the payload are described as well as the observing procedures. Several limitations, specific to space borne instrumentation and to the milliarc second accuracy expected have been identified. However the main limitation in precision remains the photon noise. The data reduction methods are sketched. The data downlinked at a rate of 20 kilobits per second have to be used with an equal weight all over the 21/2 years of observation. They are expected to yield a mean accuracy of 2 milliarc seconds in position and parallax and 2 m.a.s. per year in proper motion for most of the 100000 stars of the program (M b < 9). Stars to be observed by HIPPARCOS have to be carefully selected. The main fields in which the results of HIPPARCOS will be used are listed from the proposals made by the scientific community. The task of constructing the HIPPARCOS input catalogue from these proposals is presented.Another feature of the ESA astrometric satellite is the use of the HIPPARCOS star-mapper as a photometric and position survey of the sky. This experiment, called TYCHO, should give at least 400000 star positions with accuracies of the order of 0.03 to 0.15 depending upon the magnitudes. Two colour instantaneous magnitudes should also be obtained to 0.1–0.4 mag. precision.Several Space-Telescope on-board instruments are also capable to make small field astrometric observations. Accurate imaging is possible with the Wide Field and the Faint Object cameras. Lunar occultations will be performed with the High Speed photometer. But the main astrometric mode of the Space Telescope will be the use of the Fine Guidance Sensors to measure the relative positions of stars to ±0.002. It is described together with its main scientific applications.The establishment of an absolute reference frame is subsequently discussed. Plans using simultaneously VLBI, HIPPARCOS, and Space Telescope observations are described. They consist in linking the HIPPARCOS stellar system to quasars via radio-stars or stars in the vicinity of optical quasars.Finally, several space astrometry proposals are described: long focus space astrometry and two versions of space interferometry.  相似文献   

2.
Measurements made with the charged particle spectrometer of the Max-Planck-Institut für Aeronomie onboard GEOS-1 were used to investigate the behaviour of energetic electrons and ions in the dusk sector of the magnetosphere. During substorms the integral ion flux ( 24 KeV) increased whereas the integral electron flux ( 20 KeV) first decreased and later on also increased. The dependences of these flux variations on pitch-angle and particle energy are described and discussed in terms of particle drift in the geomagnetic and geoelectric fields and adiabatic energy variations. The results also provide some information on the source region of the drifting particles.  相似文献   

3.
The tracking and data acquisition systems provide the key link between the remote spacecraft and the scientific experimenter on the ground. The operation of the space experiment takes place through the links of command, telemetry and tracking. The evolution from the early very simple spacecraft missions toward more complex and sophisticated missions has been paralleled by a similar evolution in the tracking and data acquisition systems. The early Minitrack interferometer tracking system still carries the major tracking workload for space missions; however greater tracking accuracy requirements for more recent missions, such as the Orbiting Geophysical Observatory and the Apollo mission, have brought about the development of unified tracking and data acquisition systems which utilize hybrid pseudo-random code/sidetone ranging techniques. The data acquisition has evolved from analog telemetry systems to the present day heavy use of PCM digital telemetry. Likewise the command systems have evolved from early simple on/off command systems into PCM digital command data systems. The trend is toward greater real time control of more complex functions on board the spacecraft. Newer spacecraft are incorporating computer-type systems in the spacecraft which require programming and memory load through the ground command link. The most attractive concept for the next generation network for tracking and data acquisition is a network consisting of synchronous-orbit Tracking and Data Relay Satellites for covering launches and low-orbit earth satellites plus a few selected ground stations for supporting spacecraft in high earth orbit and lunar orbit.  相似文献   

4.
Temporal and spectral characteristics of solar hard X-ray bursts are briefly reviewed. The merits of non-thermal and thermal flare models are discussed. The validity of these models may be checked by future measurements of X-ray polarization. Finally, some important results of recent satellite experiments are described providing information on the spatial distribution of hard X-ray sources: the multi-spacecraft observation of X-ray bursts and the imaging of X-ray sources by means of the HXIS instrument.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

5.
Some of the problems foreseen for the joint accommodation and operation of the Grazing Incidence Solar Telescope (GRIST) under study by ESA to operate in the extreme ultraviolet region (90 < < 1700 Å), and the Solar Optical Telescope (SOT), developed by NASA to operate in the ultraviolet, optical and infrared region (A > 1100 Å) on a Spacelab mission are described.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.  相似文献   

6.
This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earth's magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above 20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to 1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of E/E0.3 and angular resolution of 22.5°×36°, and full 4 steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from 3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, E/E0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4 steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements.  相似文献   

7.
Solar wind observations associated with the enhanced levels of solar activity in August 1972 are reviewed with an emphasis on recent analyses which more unambiguously characterize the changes in the interplanetary medium. Observations from Pioneer 9 at 0.8 AU, Pioneer 10 at 2.2 AU, and in the vicinity of Earth are reviewed and reinterpreted in the light of new data. Recent calculations of local shock velocities are reviewed and their implications discussed. These results indicate that contrary to previously published observations there is no significant deceleration of the interplanetary shocks between 0.8 AU and 2.2 AU.  相似文献   

8.
An instrument for advanced studies of the solar corona is described. Its optical system provides nearly stigmatic imaging of selected portions of the Sun over the spectral range from 22.5 to 44.0 nm. Both spectroheliograms and emission line profiles of coronal features will be obtained over a wide range of coronal temperatures.Proceedings of the Conference Solar Physics from Space, held at the Swiss Federal Institute of Technology Zurich (ETHZ), 11–14 November 1980.This paper was presented at the conference by U. Feldman.  相似文献   

9.
Spartan 201 is a shuttle deployed spacecraft that is scheduled to perform ultraviolet spectroscopy and white light polarimetry of the extended solar corona during two 40 hour missions to occur in September 1994 and August 1995. The spectroscopy is done with an ultraviolet coronal spectrometer which measures the intensity and spectral line profile of HI Ly up to heliocentric heights of 3.5 solar radii. It also measures the intensities of the OVI doublet at 1032 and 1037 Å and of Fe XII at 1242 Å. The HI Ly line profile measurements are used to determine the random velocity distribution of coronal protons along the line-of-sight. The absolute HI Ly intensities can be used together with electron densities from the white light coronagraph to estimate electron temperatures from hydrogen ionization balance calculations, and bulk outflow velocities from models of Doppler dimmed resonant scattering. Intensities of minor ion lines are used to determine coronal abundances and outflow velocities of O5+. Ultraviolet spectroscopy of extended coronal regions from the 11 April 1993 mission of Spartan 201 are discussed.  相似文献   

10.
The radio telemetry links between Earth and a spacecraft near superior conjunction penetrate the corona at ranges well within the acceleration regime of the solar wind. Occultation experiments in the solar corona have been performed on many interplanetary missions beginning with the Mariner and Pioneer series and extending up to the more recent data on Helios, Viking, and Voyager. The changes in group and phase velocity of the radio signal are measured to determine the total electron content of the corona and its fluctuations. The broadening of the carrier signal may be used in combination with the electron content data to derive a solar wind velocity profile. The wave number spectrum of electron density fluctuations in the corona may be inferred from amplitude and phase scintillations of the received signal. Linearly polarized signals, which are rotated along the propagation path by the Faraday effect, can provide information on the coronal magnetic field and its variations.Paper presented at the IX-th Lindau Workshop The Source Region of the Solar Wind.  相似文献   

11.
A technique to derive the coronal density irregularity factor , wheren is the electron density, has been proposed by Fineschi and Romoli (1993). This technique will exploit the unique UVCS capability of cotemporal and cospatial measurements of both UV line radiation and K-coronal polarized brightness,pB.The ratio of the measured H I Lyman (Ly-) line intensity to the resonant-scattering dominated H I Lyman (Ly-) intensity can be used to extract the collisional component of the Ly-. This component yields an estimate of . The quantity is then obtained from the UVCS white-light K-coronal measurements.We present simulated observations of the UVCS for coronal atmosphere models with different filling factors and electron density profiles, and for different coronal structures (e.g., coronal holes, streamers). These simulations will show how the proposed technique may be used to probe inhomogeneities of the solar corona.  相似文献   

12.
Recent results from observations of the southern sky objects are summarized. The unpulsed, persistent very high energy (VHE) emission from the gamma ray pulsars, the Crab and PSR1706-44, is discussed. A process of energetic electrons ejection may take place from a variety of other objects such as from X-ray binaries, similarly to the pulsars. Such an effect may be seen also in pair halos around extragalactic VHE gamma ray emitters, the observational study of which is still in a preliminary stage in the southern hemisphere.  相似文献   

13.
Cooling of neutron stars is calculated using an exact stellar evolution code. The full general relativistic version of the stellar structure equations are solved, with the best physical input currently available. For neutron stars with a stiff equation of state, we find that the deviation from the isothermality in the interior is significant and that it takes at least a few thousand years to reach the isothermal state. By comparing the most recent theoretical and observational results, we conclude that for Cas A, SN1006, and probably Tycho, standard cooling is inconsistent with the results from the Einstein Observatory, if neutron stars are assumed to be present in these objects. On the other hand, the detection points for RCW103 and the Crab are consistent with these theoretical results.On leave from Department of Physics, Ibaraki University, Japan  相似文献   

14.
An analogy is drawn between the current knowledge on terrestrial snow and ice-cap chemistry and the possible composition of snowfall and ice caps of Mars. Terrestrial snowfall reflects the composition of the Earth's atmosphere. Snow cover further interacts with the atmosphere and is the recipient of aerosol and particulate fall-out. The snow is transformed to firn and ice and the chemical signatures become locked into the perennial ice sheets. The chemical profiles of ice thus constitute environmental records of the Earth's past. By considering the present knowledge on the hydrologie cycle of Mars and the chemistry of the atmosphere, a simple analogous model for the chemical profile of the North polar ice cap is proposed. Three major constituents of the ice are discussed: water ice, dust, and occluded air bubbles. The seasonal fluctuations and interannual variability of these components are examined as possible chemical signatures for the dating of ice, elucidating hydrologie processes, and recording long-term climatic change. The model of the north polar cap in summer consists of water-ice fine-dust layers (30–200 m thick) sandwiched between annual dust layers of variable size distribution and thickness (< 1m– > 66 m). The water ice is subjected to metamorphism and grain growth. The interpretation of the physico-chemical profile could lead to increased knowledge on the recent climatic past (1,000–2,000 years), hydrologic reservoirs, and seasonal cycles in the atmospheric dynamics of the planet.  相似文献   

15.
In the past several years, X-ray observations of the Sun made from rockets and satellites have demonstrated the existence of high temperature (20 × 106 – 100 × 106 K), low density plasmas associated with solar flare phenomena. In the hard X-ray range ( < 1 ), spectra of the flaring plasma have been obtained using proportional and scintillation counter detectors. It is possible from these data to determine the evolution of the hard X-ray flare spectrum as the burst progresses; and by assuming either a non-thermal or thermal (Maxwellian) electron distribution function, characteristic plasma parameters such as emission measure and temperature (for a thermal interpretation) can be determined. Thermal interpretations of hard X-ray data require temperatures of 100 × 106 K.In contrast, the soft X-ray flare spectrum (1 <<30 ) exhibits line emission from hydrogen-like and helium-like ions, e.g. Ne, Mg, Al, Si,... Fe, that indicates electron energies more characteristic of temperatures of 20 × 106 K. Furthermore, line intensity ratios obtained during the course of an event show that the flare plasma can only be described satisfactorily by assuming a source composed of several different temperature regions; and that the emission measures and temperatures of these regions appear to change as the flare evolves. Temperatures are determined from line ratios of hydrogen-like to helium-like ions for a number of different elements, e.g., S, Si, and Mg, and from the slope of the X-ray continuum which is assumed to be due to free-free and free-bound emission. There is no obvious indication in soft X-ray flare spectra of non-thermal processes, although accurate continuum measurements are difficult with the data obtained to date because of higher order diffraction effects due to the use of crystal spectrometers.Soft X-ray flare spectra also show satellite lines of the hydrogen-like and helium-like ions, notably the 1s 22s 2 S-1s2s2p 2 P transition of the lithium-like ion, and support the contention that in low density plasmas these lines are formed by dielectronic recombination to the helium-like ion. Also, series of allowed transitions of hydrogen-like and helium-like ions are strong, e.g., the Lyman series of S up to Lyman-, and ratios of the higher member lines to the Lyman- line can be compared with theoretical calculations of the relative line strengths obtained by assuming various processes of line formation.This review will discuss the X-ray spectrum of solar flares from 250 keV to 0.4 keV, but will be primarily concerned with the soft X-ray spectrum and the interpretation of emission lines and continuum features that lie in this spectral range.  相似文献   

16.
A review is given of the solar radiation between wavelengths of approx. 5 m. and 1 mm. After discussing the astrophysical background (Section 2), we review the brightness temperatures measured in the continuous spectrum in the disk center (Section 3), and compare them with model predictions. The observed limb darkening (or brightening) is described in Section 4, and the line spectrum in Section 5. In Section 6 considerations are given on the usefulness of infrared observations for the investigation of small structures on the Sun.  相似文献   

17.
X-ray spectra of the BL Lac type object Mkn 421 and several Seyfert type 1 galaxies; IIIZw2, MCG8-11-11 and NGC 4151, have been obtained using the Leicester University instrument on board the Ariel-6 satellite. The Mkn 421 spectrum is best represented by two powerlaw components, the soft component having 3.4 whilst the hard flux has 1.0. In MCG8-11-11 there is clear evidence for spectral variability between our observation in late 1979 and that of HEAO-1/A2 in 1977. The Ariel-6 spectrum of MCG8-11-11 can be fitted by a powerlaw of index 2.1 together with an iron line at 6.2 keV with an equivalent width of 1.6 keV. The first X-ray spectrum of IIIZw2 is also presented, fitting with a powerlaw we find an index of 1.7. With the exception of NGC 4151 there is no evidence for a significant column of cool material along the line of sight.  相似文献   

18.
The spectra and anisotropies of ions 30 keV have been measured by the Low Energy Charged Particle experiment on Voyagers 1 and 2 in the vicinity of interplanetary shocks between radial distances of 1–55 AU and heliographic latitudes 11° S-32° N. The spectra and anisotropies associated with a recent corotating (CIR) event at low latitude observed at Voyager 2 (36.6 AU, –9°) are similar to those of another event at high latitude observed at Voyager 1 (49.8 AU, 33.5°). An earlier CIR event observed at Voyager 2 (14 AU) associated with the previous solar cycle produced spectra and anisotropies remarkably similar to the more recent events. The anisotropies are used to calculate the solar wind velocity downstream of shocks where possible using the Compton-Getting effect, allowing the determination of previously unknown velocities at the locations of Voyager 1. For the large shock event observed at Voyagers 1 (38 AU, 30°) and 2 (29 AU, 3°) in mid-1989, the postshock spectra and anisotropies are well described by convected power law distributions. The Voyager 1 and 2 postshock spectra 4 days after the shock passage are nearly identical. The preshock anisotropies at low energy are similar, despite differences in the magnetic field orientation and the low energy spectrum. We find that the 30 keV ion anisotropies are generally well described by convective distributions downstream but not in the upstream region for shocks and many other shock events at Voyagers 1 and 2.  相似文献   

19.
We consider the influence of the nonlinear stage of gravitational instability on the two-point correlation functions of gravitationally bound objects. Based on the theory of nonlinear gravitational contraction of a single density peak of dissipationless matter (Gurevich and Zybin, 1988a,b; 1990) we develop a method for calculating the two-point correlation functions of different objects of any mass. The method works good in the region of strong correlations and can be easily extended to calculate higher correlation functions. We show that the main contribution to the correlation function i in the region of strong correlations i 1 is made by pair systems located outside large clusters of objects. In this region the shape of i is determined only by the nonlinear dynamics of gravitational contraction of dissipationless matter and has the form i C , where 1.8 is a universal parameter.  相似文献   

20.
During a balloon flight of the MISO telescope on the 30th September 1979, the Seyfert galaxies NGC 4151 and MGC 8-11-11 were studied in the hard X-ray range (EX > 20 keV) and low-energy -ray range up to 19 MeV. An emission at the 4.5 level above 20 keV (4 above 260 keV) was detected in the direction of NGC 4151. -ray emission at the 3.9 level above 90 keV was also observed from the direction of MCG 8-11-11. The emission photon spectrum shows a high-energy cutoff at about 3 MeV. A large amount of the observed low-energy -ray diffuse background could be produced by a few percent of the X-ray emitting Seyfert galaxies having a -ray luminosity comparable to that observed from the regions of NGC 4151 or MCG 8-11-11.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号