共查询到9条相似文献,搜索用时 0 毫秒
1.
B. H. Mauk N. J. Fox S. G. Kanekal R. L. Kessel D. G. Sibeck A. Ukhorskiy 《Space Science Reviews》2013,179(1-4):3-27
The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populations of high energy charged particles are created, vary, and evolve in space environments, and specifically within Earth’s magnetically trapped radiation belts. RBSP, with a nominal launch date of August 2012, comprises two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1×5.8 RE, 10°). The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every 2.5 months, allowing separation of spatial from temporal effects over spatial scales ranging from ~0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the two spacecraft, measures all of the particle (electrons, ions, ion composition), fields (E and B), and wave distributions (d E and d B) that are needed to resolve the most critical science questions. Here we summarize the high level science objectives for the RBSP mission, provide historical background on studies of Earth and planetary radiation belts, present examples of the most compelling scientific mysteries of the radiation belts, present the mission design of the RBSP mission that targets these mysteries and objectives, present the observation and measurement requirements for the mission, and introduce the instrumentation that will deliver these measurements. This paper references and is followed by a number of companion papers that describe the details of the RBSP mission, spacecraft, and instruments. 相似文献
2.
A finite element model of the Z-crimp shaping from a hard sheet blank is developed and a number of calculations using the ANSYS finite element software is conducted. The calculations are carried out in the framework of elastoplastic behavior of the blank material using the classical model of bilinear kinematic (translational) hardening with corresponding parameters of elasticity and plasticity. The model takes into account kinematics of spatial transformation of the shaping equipment as well as the time-variable conditions of its contact interaction with the blank. 相似文献
3.
4.
董慧萍 《西安航空技术高等专科学校学报》2004,22(4):31-32
我国社会主义市场经济体制的建立与发展,和马克思主义创始初期有很大的不同,迫使我们对教科书中的一些提法进行重新审视,要求我们结合新的历史条件和实际,讲清“资本”、“剩余价值”、“按劳分配”、“按生产要素分配”等问题,以科学态度对待马克思主义的政治经济学,体现马克思主义与时俱进的理论品质。 相似文献
5.
The InSight mission launches in 2018 to characterize several geophysical quantities on Mars, including the heat flow from the planetary interior. This quantity will be calculated by utilizing measurements of the thermal conductivity and the thermal gradient down to 5 meters below the Martian surface. One of the components of InSight is the Mole, which hammers into the Martian regolith to facilitate these thermal property measurements. In this paper, we experimentally investigated the effect of the Mole’s penetrating action on regolith compaction and mechanical properties. Quasi-static and dynamic experiments were run with a 2D model of the 3D cylindrical mole. Force resistance data was captured with load cells. Deformation information was captured in images and analyzed using Digitial Image Correlation (DIC). Additionally, we used existing approximations of Martian regolith thermal conductivity to estimate the change in the surrounding granular material’s thermal conductivity due to the Mole’s penetration. We found that the Mole has the potential to cause a high degree of densification, especially if the initial granular material is relatively loose. The effect on the thermal conductivity from this densification was found to be relatively small in first-order calculations though more complete thermal models incorporating this densification should be a subject of further investigation. The results obtained provide an initial estimate of the Mole’s impact on Martian regolith thermal properties. 相似文献
6.
Andrew W. Stephan R. R. Meier Scott L. England Stephen B. Mende Harald U. Frey Thomas J. Immel 《Space Science Reviews》2018,214(1):42
The NASA Ionospheric Connection Explorer Far-Ultraviolet spectrometer, ICON FUV, will measure altitude profiles of the daytime far-ultraviolet (FUV) OI 135.6 nm and N2 Lyman-Birge-Hopfield (LBH) band emissions that are used to determine thermospheric density profiles and state parameters related to thermospheric composition; specifically the thermospheric column O/N2 ratio (symbolized as \(\Sigma\)O/N2). This paper describes the algorithm concept that has been adapted and updated from one previously applied with success to limb data from the Global Ultraviolet Imager (GUVI) on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. We also describe the requirements that are imposed on the ICON FUV to measure \(\Sigma\)O/N2 over any 500-km sample in daytime with a precision of better than 8.7%. We present results from orbit-simulation testing that demonstrates that the ICON FUV and our thermospheric composition retrieval algorithm can meet these requirements and provide the measurements necessary to address ICON science objectives. 相似文献
7.
Paul Morgan Suzanne E. Smrekar Ralph Lorenz Matthias Grott Olaf Kroemer Nils Müller 《Space Science Reviews》2017,211(1-4):277-313
The HP3 instrument on the InSight lander mission will measure subsurface temperatures and thermal conductivities from which heat flow in the upper few meters of the regolith at the landing site will be calculated. The parameter to be determined is steady-state conductive heat flow, but temperatures may have transient perturbations resulting from surface temperature changes and there could be a component of thermal convection associated with heat transport by vertical flow of atmospheric gases over the depth interval of measurement. The experiment is designed so that it should penetrate to a depth below which surface temperature perturbations are smaller than the required measurement precision by the time the measurements are made. However, if the measurements are delayed after landing, and/or the probe does not penetrate to the desired depth, corrections may be necessary for the transient perturbations. Thermal convection is calculated to be negligible, but these calculations are based on unknown physical properties of the Mars regolith. The effects of thermal convection should be apparent at shallow depths where transient thermal perturbations would be observed to deviate from conductive theory. These calculations were required during proposal review and their probability of predicting a successful measurement a prerequisite for mission approval. However, their uncertainties lies in unmeasured physical parameters of the Mars regolith. 相似文献
8.
9.
Collecting Samples in Gale Crater, Mars; an Overview of the Mars Science Laboratory Sample Acquisition, Sample Processing and Handling System 总被引:1,自引:0,他引:1
R. C. Anderson L. Jandura A. B. Okon D. Sunshine C. Roumeliotis L. W. Beegle J. Hurowitz B. Kennedy D. Limonadi S. McCloskey M. Robinson C. Seybold K. Brown 《Space Science Reviews》2012,170(1-4):57-75
The Mars Science Laboratory Mission (MSL), scheduled to land on Mars in the summer of 2012, consists of a rover and a scientific payload designed to identify and assess the habitability, geological, and environmental histories of Gale crater. Unraveling the geologic history of the region and providing an assessment of present and past habitability requires an evaluation of the physical and chemical characteristics of the landing site; this includes providing an in-depth examination of the chemical and physical properties of Martian regolith and rocks. The MSL Sample Acquisition, Processing, and Handling (SA/SPaH) subsystem will be the first in-situ system designed to acquire interior rock and soil samples from Martian surface materials. These samples are processed and separated into fine particles and distributed to two onboard analytical science instruments SAM (Sample Analysis at Mars Instrument Suite) and CheMin (Chemistry and Mineralogy) or to a sample analysis tray for visual inspection. The SA/SPaH subsystem is also responsible for the placement of the two contact instruments, Alpha Particle X-Ray Spectrometer (APXS), and the Mars Hand Lens Imager (MAHLI), on rock and soil targets. Finally, there is a Dust Removal Tool (DRT) to remove dust particles from rock surfaces for subsequent analysis by the contact and or mast mounted instruments (e.g. Mast Cameras (MastCam) and the Chemistry and Micro-Imaging instruments (ChemCam)). 相似文献