共查询到20条相似文献,搜索用时 0 毫秒
1.
Astrid Maute 《Space Science Reviews》2017,212(1-2):523-551
The NASA Ionospheric Connection explorer (ICON) will study the coupling between the thermosphere and ionosphere at low- and mid-latitudes by measuring the key parameters. The ICON mission will also employ numerical modeling to support the interpretation of the observations, and examine the importance of different vertical coupling mechanisms by conducting numerical experiments. One of these models is the Thermosphere-Ionosphere-Electrodynamics General Circulation Model-ICON (TIEGCM-ICON) which will be driven by tidal perturbations derived from ICON observations using the Hough Mode Extension method (HME) and at high latitude by ion convection and auroral particle precipitation patterns from the Assimilative Mapping of Ionospheric Electrodynamics (AMIE). The TIEGCM-ICON will simulate the thermosphere-ionosphere (TI) system during the period of the ICON mission. In this report the TIEGCM-ICON is introduced, and the focus is on examining the effect of the lower boundary on the TI-system to provide some guidance for interpreting future ICON model results. 相似文献
2.
Farzad Kamalabadi Jianqi Qin Brian J. Harding Dimitrios Iliou Jonathan J. Makela R. R. Meier Scott L. England Harald U. Frey Stephen B. Mende Thomas J. Immel 《Space Science Reviews》2018,214(4):70
The Ionospheric Connection Explorer (ICON) Far Ultraviolet (FUV) imager, ICON FUV, will measure altitude profiles of OI 135.6 nm emissions to infer nighttime ionospheric parameters. Accurate estimation of the ionospheric state requires the development of a comprehensive radiative transfer model from first principles to quantify the effects of physical processes on the production and transport of the 135.6 nm photons in the ionosphere including the mutual neutralization contribution as well as the effect of resonant scattering by atomic oxygen and pure absorption by oxygen molecules. This forward model is then used in conjunction with a constrained optimization algorithm to invert the anticipated ICON FUV line-of-sight integrated measurements. In this paper, we describe the connection between ICON FUV measurements and the nighttime ionosphere, along with the approach to inverting the measured emission profiles to derive the associated O+ profiles from 150–450 km in the nighttime ionosphere that directly reflect the electron density in the F-region of the ionosphere. 相似文献
3.
Andrew W. Stephan Eric J. Korpela Martin M. Sirk Scott L. England Thomas J. Immel 《Space Science Reviews》2017,212(1-2):645-654
The NASA Ionospheric Connection Explorer Extreme Ultraviolet spectrograph, ICON EUV, will measure altitude profiles of the daytime extreme-ultraviolet (EUV) OII emission near 83.4 and 61.7 nm that are used to determine density profiles and state parameters of the ionosphere. This paper describes the algorithm concept and approach to inverting these measured OII emission profiles to derive the associated \(\mathrm{O}^{+}\) density profile from 150–450 km as a proxy for the electron content in the F-region of the ionosphere. The algorithm incorporates a bias evaluation and feedback step, developed at the U.S. Naval Research Laboratory using data from the Special Sensor Ultraviolet Limb Imager (SSULI) and the Remote Atmospheric and Ionospheric Detection System (RAIDS) missions, that is able to effectively mitigate the effects of systematic instrument calibration errors and inaccuracies in the original photon source within the forward model. Results are presented from end-to-end simulations that convolved simulated airglow profiles with the expected instrument measurement response to produce profiles that were inverted with the algorithm to return data products for comparison to truth. Simulations of measurements over a representative ICON orbit show the algorithm is able to reproduce hmF2 values to better than 5 km accuracy, and NmF2 to better than 12% accuracy over a 12-second integration, and demonstrate that the ICON EUV instrument and daytime ionosphere algorithm can meet the ICON science objectives which require 20 km vertical resolution in hmF2 and 18% precision in NmF2. 相似文献
4.
A user-oriented method for generating velocity estimates based on phase measurements of radio navigation transmissions like Omega is presented. Various geometric schemes, together with numerical implementation of the algorithm, are discussed. 相似文献
5.
Andrew W. Stephan R. R. Meier Scott L. England Stephen B. Mende Harald U. Frey Thomas J. Immel 《Space Science Reviews》2018,214(1):42
The NASA Ionospheric Connection Explorer Far-Ultraviolet spectrometer, ICON FUV, will measure altitude profiles of the daytime far-ultraviolet (FUV) OI 135.6 nm and N2 Lyman-Birge-Hopfield (LBH) band emissions that are used to determine thermospheric density profiles and state parameters related to thermospheric composition; specifically the thermospheric column O/N2 ratio (symbolized as \(\Sigma\)O/N2). This paper describes the algorithm concept that has been adapted and updated from one previously applied with success to limb data from the Global Ultraviolet Imager (GUVI) on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. We also describe the requirements that are imposed on the ICON FUV to measure \(\Sigma\)O/N2 over any 500-km sample in daytime with a precision of better than 8.7%. We present results from orbit-simulation testing that demonstrates that the ICON FUV and our thermospheric composition retrieval algorithm can meet these requirements and provide the measurements necessary to address ICON science objectives. 相似文献
6.
This report is a brief introduction to some of the vital contributions that the Advanced Composition Explorer Mission will make towards our understanding of the origins of matter and acceleration of particles on a wide range of solar and astrophysical scales. Examples of these contributions are drawn from two broad areas of the space sciences. They are: (1) Dynamical phenomena at the Sun and in the inner heliosphere; and (2) The elemental and isotopic composition of matter in the solar wind, solar accelerated ejecta, galactic cosmic radiation and the anomalous nuclear component in the heliosphere. Some current problems with theories intended to account for these phenomena are discussed, including interpretations of the stable and radioactive isotopes in the galactic cosmic rays. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
7.
Parametric data is presented showing the effects of combining velocity measurements with the usual position measurements in a simple form of target tracking filter. Effects on steady-state performance and filter gains are shown, as well as data on time required for convergence to steady state. 相似文献
8.
Stone E.C. Cohen C.M.S. Cook W.R. Cummings A.C. Gauld B. Kecman B. Leske R.A. Mewaldt R.A. Thayer M.R. Dougherty B.L. Grumm R.L. Milliken B.D. Radocinski R.G. Wiedenbeck M.E. Christian E.R. Shuman S. Trexel H. von Rosenvinge T.T. Binns W.R. Crary D.J. Dowkontt P. Epstein J. Hink P.L. Klarmann J. Lijowski M. Olevitch M.A. 《Space Science Reviews》1998,86(1-4):285-356
The Cosmic-Ray Isotope Spectrometer is designed to cover the highest decade of the Advanced Composition Explorer's energy
interval, from ∼50 to ∼500 MeV nucl−1, with isotopic resolution for elements from Z≃2 to Z≃30. The nuclei detected in this
energy interval are predominantly cosmic rays originating in our Galaxy. This sample of galactic matter can be used to investigate
the nucleosynthesis of the parent material, as well as fractionation, acceleration, and transport processes that these particles
undergo in the Galaxy and in the interplanetary medium.
Charge and mass identification with CRIS is based on multiple measurements of dE/dx and total energy in stacks of silicon
detectors, and trajectory measurements in a scintillating optical fiber trajectory (SOFT) hodoscope. The instrument has a
geometrical factor of ∼r250 cm2 sr for isotope measurements, and should accumulate ∼5×106 stopping heavy nuclei (Z>2) in two
years of data collection under solar minimum conditions.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
9.
Stone E.C. Cohen C.M.S. Cook W.R. Cummings A.C. Gauld B. Kecman B. Leske R.A. Mewaldt R.A. Thayer M.R. Dougherty B.L. Grumm R.L. Milliken B.D. Radocinski R.G. Wiedenbeck M.E. Christian E.R. Shuman S. von Rosenvinge T.T. 《Space Science Reviews》1998,86(1-4):357-408
The Solar Isotope Spectrometer (SIS), one of nine instruments on the Advanced Composition Explorer (ACE), is designed to provide
high- resolution measurements of the isotopic composition of energetic nuclei from He to Zn (Z=2 to 30) over the energy range
from ∼10 to ∼100 MeV nucl−1. During large solar events SIS will measure the isotopic abundances of solar energetic particles
to determine directly the composition of the solar corona and to study particle acceleration processes. During solar quiet
times SIS will measure the isotopes of low-energy cosmic rays from the Galaxy and isotopes of the anomalous cosmic-ray component,
which originates in the nearby interstellar medium. SIS has two telescopes composed of silicon solid-state detectors that
provide measurements of the nuclear charge, mass, and kinetic energy of incident nuclei. Within each telescope, particle trajectories
are measured with a pair of two-dimensional silicon-strip detectors instrumented with custom, very large-scale integrated
(VLSI) electronics to provide both position and energy-loss measurements. SIS was especially designed to achieve excellent
mass resolution under the extreme, high flux conditions encountered in large solar particle events. It provides a geometry
factor of ∼40 cm2 sr, significantly greater than earlier solar particle isotope spectrometers. A microprocessor controls the
instrument operation, sorts events into prioritized buffers on the basis of their charge, range, angle of incidence, and quality
of trajectory determination, and formats data for readout by the spacecraft. This paper describes the design and operation
of SIS and the scientific objectives that the instrument will address.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
10.
Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users 总被引:17,自引:0,他引:17
The goal in designing an ionospheric time-delay correctionalgorithm for the single-frequency global positioning system userwas to include the main features of the complex behavior of theionosphere, yet require a minimum of coefficients and usercomputational time, while still yielding an rms correction of at least50 percent. The algorithm designed for this purpose, andimplemented in the GPS satellites, requires only eight coefficientssent as part of the satellite message, contains numerousapproximations designed to reduce user computationalrequirements, yet preserves the essential elements required to obtaingroup delay values along multiple satellite viewing directions. 相似文献
11.
Thomas H. Zurbuchen 《Space Science Reviews》2007,130(1-4):515-526
The extraordinary life and scientific achievements of Johannes Geiss span an almost impossible breadth of scientific topics,
from the study of rocks to tenuous plasmas, from volcanoes to meteorites. But, his impact also extends way beyond the field
of science. Professor Geiss is a well-known teacher and a highly successful science leader whose impact has been felt at the
University of Bern, in Switzerland, and around the globe. We present here a brief summary of this highly successful career
via a pictorial overview and a movie compiled by a former student who had the good luck to work with Professor Geiss during
his years at the University of Bern.
Electronic Supplementary Material The online version of this article () contains supplementary material, which is available to authorized users. 相似文献
12.
火星探测器气动外形/弹道一体化多目标优化 总被引:1,自引:0,他引:1
针对火星探测器概念设计阶段的需求,提出了融合气动外形、弹道和开伞条件的一体化多目标优化设计方法。首先建立了火星探测器进入段三自由度弹道运动方程,基于修正牛顿理论推导了适用于具有较大半锥角球锥外形的气动参数估算模型,采用Sutton-Graves公式计算了驻点热流密度。以开伞高度、总吸热量和容积率为目标函数建立了火星探测器气动外形/弹道一体化多目标优化模型,采用基于分解的多目标进化算法(MOEA/D)进行求解计算并与参考设计进行了对比。数值结果表明:多目标优化方法提供多个三目标均优于参考设计的Pareto最优解,为火星探测器的概念设计提供了一定的参考依据。 相似文献
13.
Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer 总被引:1,自引:0,他引:1
McComas D.J. Bame S.J. Barker P. Feldman W.C. Phillips J.L. Riley P. Griffee J.W. 《Space Science Reviews》1998,86(1-4):563-612
The Solar Wind Electron Proton Alpha Monitor (SWEPAM) experiment provides the bulk solar wind observations for the Advanced
Composition Explorer (ACE). These observations provide the context for elemental and isotopic composition measurements made
on ACE as well as allowing the direct examination of numerous solar wind phenomena such as coronal mass ejections, interplanetary
shocks, and solar wind fine structure, with advanced, 3-D plasma instrumentation. They also provide an ideal data set for
both heliospheric and magnetospheric multi-spacecraft studies where they can be used in conjunction with other, simultaneous
observations from spacecraft such as Ulysses. The SWEPAM observations are made simultaneously with independent electron and
ion instruments. In order to save costs for the ACE project, we recycled the flight spares from the joint NASA/ESA Ulysses
mission. Both instruments have undergone selective refurbishment as well as modernization and modifications required to meet
the ACE mission and spacecraft accommodation requirements. Both incorporate electrostatic analyzers whose fan-shaped fields
of view sweep out all pertinent look directions as the spacecraft spins. Enhancements in the SWEPAM instruments from their
original forms as Ulysses spare instruments include (1) a factor of 16 increase in the accumulation interval (and hence sensitivity)
for high energy, halo electrons; (2) halving of the effective ion-detecting CEM spacing from ∼5° on Ulysses to ∼2.5° for ACE;
and (3) the inclusion of a 20° conical swath of enhanced sensitivity coverage in order to measure suprathermal ions outside
of the solar wind beam. New control electronics and programming provide for 64-s resolution of the full electron and ion distribution
functions and cull out a subset of these observations for continuous real-time telemetry for space weather purposes.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
14.
15.
用线扫描方法研究某种型号的3cm卡夫曼离子源的稳定性,先介绍了线扫描法估计去除函数的方法以及其数学模型,用线扫描法扫描两块微晶镜面,估计出在不同时间的去除函数,分析去除函数的波动情况来考察离子源稳定性。结果表明该种型号的3cm卡夫曼离子源具有很好的稳定性,满足光学镜面加工要求。 相似文献
16.
Analysis of four-frequency satellite Doppler data has allowed the separation and measurement of frequency-dependent ionospheric contributions to the Doppler shift, providing information useful in the study of errors incurred when tracking radio signals through the ionosphere. These refraction errors affect the accuracy of navigational position fixes obtained by Doppler satellite tracking systems. Some measured ionospheric refraction errors reported here are of interest because their magnitudes are significantly greater than those heretofore predicted from theoretical considerations. 相似文献
17.
18.
The atomic physics relevant to the interpretation of solar spectra produced by plasmas at temperatures ≳ 105 K are discussed. Methods for determining relative abundance ratios are presented and examples provided from the Coronal Diagnostic Spectrometer on board SOHO. In particular, the Fe/Si ratio in the corona is found to be close to photospheric; the Mg/Ne ratio in the transition region is found to vary by an order of magnitude in different solar features. The Mg/Ne ratios in supergranule cell centres and the network are separated for the first time, although no significant differences are found. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
19.
Gates David F. Haislmaier Robert J. Hill Lemmuel L. 《IEEE transactions on aerospace and electronic systems》1967,(2):303-308
A Doppler radar tracking system has been used successfully to measure impact drag coefficients for several water-entry configurations. Hemisphere-cylinder and cone-cylinder models were launched vertically into a tank of water at velocities between 100 and 200 feet per second. These launchings were evaluation tests for a system to be used in a new facility at the Naval Ordnance Laboratory?the Hydroballistics Tank. Planned launchings in that facility will be at velocities up to 3000 feet per second. Knowledge of the drag coefficient profile (CD versus depth of penetration) is important in the design of high-velocity water-entry weapons. 相似文献